
Supplement to 
Developer’s Toolkit for DAPL Manual 

Command module developer’s 
toolkit for DAPL 2000 

operating system 
 

Supplement to Version 5.03 
 
 
 
 
 

Microstar Laboratories, Inc. 



This document contains proprietary information that is protected by copyright. All 
rights are reserved. No part of this manual may be photocopied, reproduced, or 
translated to another language without prior written consent of Microstar 
Laboratories, Inc. 

Copyright © 1985-2004 
 
Microstar Laboratories, Inc. 
2265 116 Avenue N.E. 
Bellevue, WA 98004 
Tel:  (425) 453-2345 
Fax:  (425) 453-3199 

Microstar Laboratories, DAPcell, Data Acquisition Processor, DAP, DAPL, 
DAPstudio, DAPview, and Developer’s Toolkit for DAPL, are trademarks of 
Microstar Laboratories, Inc. 

Microstar Laboratories requires express written approval from its President if any 
Microstar Laboratories products are to be used in or with systems, devices, or 
applications in which failure can be expected to endanger human life. 

Microsoft, MS, and MS-DOS are registered trademarks of Microsoft Corporation. Windows is a trademark of 
Microsoft Corporation. IBM is a registered trademark of International Business Machines Corporation. Intel is 
a registered trademark of Intel Corporation. Other brand and product names are trademarks or registered 
trademarks of their respective holders. 

Supplement to Part Number MSDTDM500-0104 



Overview 3 

Overview 

This document provides supplementary information about additional DSP service 
functions available starting with release 5.03 of the Developer’s Toolkit for DAPL.  

The new functions very much resemble the FIR filtering and FFT transform 
functions provided by preceding versions of the Developer’s Toolkit. The difference 
is that the new functions support all of the data stream types available under the 
DAPL system. This makes the full capability of the built-in FIRFILTER and FFT 
commands available to custom command developers for customized DSP processing.  

The new functions provide all of the functionality of the older forms, so there is no 
reason to use the old function forms for new applications. But on the other hand, 
there is no need to convert existing applications that do not use any of the extended 
functionality. 

Who Might Benefit? 

Developers who need transforms or filters with wide dynamic range or extra 
precision can benefit from the new DSP functions. The best choice of data type 
depends on each application’s requirements. 

• WORD  This type provides the fastest processing, is the most 
compact, and is the natural data type for processing sampled data in most 
cases. 

• LONG  This type provides twice as much storage, with 
consequently slower processing time as more data pushes through the 
processor cache, but more precision than most applications will ever need. 

• FLOAT  This type offers not quite as much precision as LONG, not 
quite the speed of WORD, but scales very well, allowing a wide dynamic 
range. It is easy to use, often more compatible with host applications. 

• DOUBLE This type is bulky and slow, but extremely versatile. It 
offers the widest range and the best precision for demanding applications.  

As an example, consider the FFT of a broad-band signal. Broad-band means a lot of 
frequencies contribute to the waveform. Because there are many frequencies 
contributing signal power, none of them can contribute very much. Consequently, 
when an FFT analysis is performed, many of the transform terms are small. 



4 Overview 

Rounding to an even integer sometimes produces a disproportionately large effect, 
for example, erratic estimates of phase. Using a floating-point representation, a small 
or large value makes no difference, because each value contains separate precision 
and scaling components.  

As a second example, suppose that a digital filter is applied to a low-level signal. 
Rounding of the filtered output to integer levels is roughly the equivalent of 
introducing an interfering white noise. This might have the effect of degrading the 
signal-to-noise ratio in the filtered data stream. 

As a practical matter, floating-point representations avoid most of the problems of 
rounding, limiting, and scaling. When application demands are not severe, floating-
point operations are sometimes easier to work with.  

What Systems Are Required? 

Custom command modules developed using the 5.03 release of the Developer’s 
Toolkit for DAPL require the DAPL 2000 2.53 operating system, or a more recent 
version, and a Data Acquisition Processor model supported by that system. Custom 
command modules developed using the 5.03 release of the Developer’s Toolkit for 
DAPL will not work on Data Acquisition Processor boards running an earlier 
version of the DAPL system.  

Custom command modules using floating-point data types with the new DTD 
functions will be slow on DAP models whose processors do not provide floating-
point hardware support. 



The New Function Set 5 

The New Function Set 

The new functions in the 5.03 release of the Developer’s Toolkit for DAPL are the 
following: 

 
fftb_init replaces fft_init 
fftb_chngbuf replaces fft_chngbuf 
fftb_request replaces fft_request 
fftb_postop replaces fft_postop 
firb_init replaces fir_init 
firb_advance replaces fir_advance 
firb_change replaces fir_change 
firb_apply replaces fir_apply 

The functions act very much like their older counterparts. The main difference is 
that the functions use generic storage types rather than short integer types only. The 
generic storage types are defined by the file GENTYPES.H, which is included 
automatically with each compiled module by the main DTD.H header file. When 
accessing stored items using the generic types it is necessary to specify the data type 
with each access. Circumventing the compiler’s type checking in this manner is 
inherently dangerous, but unfortunately there is no better means for moving data 
through an interface where various data representations might be allowed. Be sure to 
pick one data type and stay with it. If you assign data using one type, and later tell 
the compiler to access the same binary values as if they are a different data type, the 
compiler will do exactly what you say but the results will not have any meaning. 

For example, suppose that you define two 91-term arrays of FIR filtering coefficients 
in a float notation.  

 
static float   coeffset1[91]; 
static float   coeffset2[91]; 
GENERIC_PTR   gpCoeff1; 
GENERIC_PTR   gpCoeff2; 
 
gpCoeff1._pFloat = &(coeffset1[0]); 
gpCoeff2._pFloat = &(coeffset2[0]); 

 

These functions will then accept the generic pointers, but of course supplementary 
information from the control structure (the FIRB or FFTB block) is needed to 
interpret the data within the generic storage. For example: 



6 The New Function Set 

 
firb_change( myFIRB, gpCoeff2, 91, iScale, iDecimate); 
 

To associate a data type with the generic buffer storage, so that functions like 
firb_change can access the stored data correctly, initialization functions must 
establish a data-stream type. The appropriate data type codes are defined in the file 
DTDCNSTS.H, which is included automatically with each compiled module by the 
main DTD.H header file. For FIR filtering, you will need to select one of the 
following data type codes for the input stream. 

 
FIR_WORDTYPE 
FIR_LONGTYPE 
FIR_FLOATTYPE 
FIR_DBLTYPE 
 

Similarly, for FFT transforms, you will need to select one of the following data type 
codes. 

 
FFT_WORDTYPE 
FFT_LONGTYPE 
FFT_FLOATTYPE 
FFT_DBLTYPE 
 

If data type flags are omitted, the data-stream type defaults to WORD data type.  

Just as data streams have a data type, windowing vectors have a data type as well. If 
you specify a custom-designed windowing vector, you can specify its data type using 
one of the following window data type codes.  

 
FFT_WORDWIN 
FFT_LONGWIN 
FFT_FLOATWIN 
FFT_DBLWIN 
 

LONG data type is suggested for all fixed-point transforms for best accuracy. For 
floating-point data types, the windowing-vector data type should match the data-
stream type. 



An FFT Example 7 

An FFT Example 

Suppose that an FFT must operate on real-valued floating-point data, producing 512 
output values for 512 input values, using a Hamming window, with power density as 
the output format. The following initialization function call will set up the FFT for 
this. 

 
FFTB   myFFT; 
GENERIC_PTR   gpRealbuf, gpImagbuf; 
GENERIC_PTR   gpWindow; 
float   myRealArray[512]; 
int   options; 
 
gpRealbuf._pFloat = &(myRealArray[0]); 
gpImagbuf._pVoid = NULL; 
gpWindow._pVoid = (void *)FFT_HAMMING; 
options = FFT_REALIN | FFT_REALOUT | FFT_FULLOUT | 
FFT_FLOATTYPE; 
 
myFFT = fftb_init(  
    512,     /* length of transform block */ 
    gpRealbuf, gpImagbuf,     /* Input/output storage */ 
    gpWindow,     /* window selection code */ 
    FFTDIR_FORWARD,    /* transform to frequency domain */ 
    FFTPOST_POWER,    /* post process to compute power 
density */ 
    options ); 
 

Comparing to the old fft_init function, we can note that the new version is very 
much the same except for the following. 

• Input/output storage are generic instead of restricted to short int arrays. 

• Window is passed as a generic pointer instead of long int. 

• There is no “fast/accurate” parameter for back compatibility with version 4 
of the Developer’s Toolkit, as this has no purpose with 32-bit processors. 

• The options include the one additional flag value for data type 



8 An FIR Filtering Example 

An FIR Filtering Example 

Suppose that we require a FIR filter to apply a vector of 71 filtering coefficients, 
operating on real-valued floating-point data, decimating by 4 and reducing the 
values by a scaling factor 1024.  The following initialization function call will set up 
the FIR filtering for this. 

 
FIRB   myFIR; 
GENERIC_PTR   gpRealCoeffs; 
GENERIC_PTR   gpMyData; 
GENERIC_SCALAR   gScale; 
float  myFloatVector[71]; 
float  myInputBuffer[512]; 
int   typeoption; 
 
gpRealCoeffs._pFloat = &(myFloatVector[0]); 
gpMyData._pFloat = &(myInputBuffer[0]); 
gScale._float = (float)1024.0; 
typeoption = FIR_FLOATTYPE; 
 
myFFT = firb_init(  
    gpRealCoeffs,     /* filter characteristic */ 
    71,     /* length of my filter characteristic */ 
    gScale,    /* scaling divisor */ 
    4,    /* decimation, retain 1 term of 4 */ 
    typeoption ); 
 

Comparing to the old fir_init function, we can note that it is very much the same, 
with the following exceptions.  

• Coefficients match the stream in data type and are passed using a generic 
pointer. 

• The scaling is a numeric divisor rather than a bit-shift reduction when 
using floating point. 

• The new option flag indicates the data type. 

 



Function Reference 9 

Function Reference 

 

This section of the Developer’s Toolkit for DAPL manual supplement provides 
complete details of the new FFT and FIR filtering functions with multiple data type 
support. 



10 Function Reference 

fftb_chngbuf 

Switch FFT to a different set of input/output data buffers. 

void  fftb_chngbuf (  
FFTB * fft, // FFT control block handle 
GENERIC_PTR  real, // Generic pointer to storage 
GENERIC_PTR  imag // Generic pointer to storage 
); 

 

Parameters 
fft 

Pointer variable containing a handle for the FFT control block to be modified. 

real 
Type-independent pointer to data storage for real-valued terms. 

imag 
Type-independent pointer to data storage for imaginary-valued terms. 

Return Values 
There is no return value. 

Description 
The function fftb_chngbuffftb_chngbuffftb_chngbuffftb_chngbuf changes the real and imaginary data pointers 
previously installed in an FFTB. The control block is identified by the handle fft. 
This function allows a single FFTB to be “switched” from one block of data storage 
to another, allowing operations upon multiple data streams. The change takes 
effect with the next operation that uses the specified FFTB. 

See Also 
fftb_initfftb_initfftb_initfftb_init 



Function Reference 11 

fftb_init 

Prepare for an FFT by defining an FFT control block. 

FFTB  *fftb_init ( 
int size, 
GENERIC_PTR  realbuf, // Pointer to storage 
GENERIC_PTR  imagbuf, // Pointer to storage 
GENERIC_PTR  windowvec, // Enumeration pointer 
int direction, // Enumeration 
int post, // Enumeration 
int options // Bit mask 
); 

 

Parameters 
size 

The length of the FFT and required data areas. It specifies the number of 
complex input items N, where N = 2M for integer M in the range 2 to 14.  

realbuf 
Generic pointer to a data storage area for real-valued terms. The binary format 
used for this storage must match the data type specified in the options 
parameter. 

imagbuf 
Generic pointer to a data storage area for imaginary-valued terms. The imagbuf 
pointer can be assigned NULL if imaginary data storage is not needed for either 
input data or output data. 

windowvec 
A generic pointer to an array of windowing coefficients, matching in size the 
length of the FFT data block, and with type as indicated by the options 
parameter. Optionally, if this pointer value is assigned one of the predefined 
codes for window operators, the windowing vector will be supplied 
automatically. Predefined enumeration codes include the following: 



12 Function Reference 

WINDOW_RECTANGULAR 
WINDOW_HANNING 
WINDOW_HAMMING 
WINDOW_BARTLETT 
WINDOW_BLACKMAN 

direction 
One of the following codes: 

FFTDIR_FORWARD 
FFTDIR_REVERSE 

post 
One of the following codes: 

FFTPOST_DEFER 
FFTPOST_REAL 
FFTPOST_CPLX 
FFTPOST_POWER 
FFTPOST_MAGNITUDE 
FFTPOST_MAG_PHASE 

options 
“Flag” bits that are combined using bitwise OR operations to select additional 
processing options, and to specify data types of streams and window vectors. 
One option from each of the groups may be selected: 

FFT_REALIN 
FFT_CPLXIN 
 
FFT_SEPARATED 
FFT_PAIRWISE 
 
FFT_HALFOUT 
FFT_FULLOUT 

FFT_WORDTYPE 
FFT_LONGTYPE 
FFT_FLOATTYPE 
FFT_DBLTYPE 
 
FFT_WORDWIN 
FFT_LONGWIN 
FFT_FLOATWIN 
FFT_DBLWIN 
 



Function Reference 13 

Return Values 
The function returns a pointer to an FFTB configuration block, used by all other 
FFT functions. 

Description 
The function fftb_initfftb_initfftb_initfftb_init allocates an FFT control block structure and initializes it 
with the options that define the characteristics of the FFT and its related 
operations. The actual operations are performed separately. 

The realbuf and imagbuf parameters specify pointers to data storage areas for 
real-valued and imaginary-valued terms respectively. The imagbuf pointer can be 
NULL if imaginary data storage is not needed for either input data or output data. 
The fftb_requestfftb_requestfftb_requestfftb_request function will fetch input data using these pointers. Depending 
on processing options, it also uses the same storage for returning results. 

The storage must be allocated by the custom command and must cover all input 
and output requirements. The rallocrallocrallocralloc function can be used to obtain storage 
blocks. The number of items to reserve is closely related to the number specified by 
the size parameter. Some examples: 

• Complex input data. When the input data is complex and stored in multiplexed 
fashion using the FFT_PAIRWISE option, both real and imaginary terms are 
provided by one data source, the realbuf array. The realbuf array requires 2 
* size terms. 

• Half-length output data. With processing options FFT_HALF and FFT_CPLX, the 
number of real input terms equals size, but after the transform, 1/2 * size 
terms each are used for storing the real and imaginary results separately. 

• Power output post-processing. Using real input data and the post-processing 
options FFTPOST_POWER and FFT_FULLOUT with WORD data, the number of 
terms returned is size, but the returned data type is long int rather than 
short int. The realbuf array must allow for 2 * size terms rather than 
size terms in its memory allocation. 

 
The window parameter specifies either a pre-defined enumeration code for a 
window operator or a generic pointer to an array of length size containing 
window-operator terms. The DAPL system can distinguish pointer values from 
enumeration codes, so the meaning of the parameter is unambiguous. 
Unfortunately, C++ syntax does not allow a data type that can be either a pointer to 
various types or a scalar value, so a GENERIC_POINTER is used. An enumeration 
code must be cast to a void pointer to assign into this data type. A code in the 
option parameter specifies the window data-array type. Type long int should 



14 Function Reference 

be used for integer-valued data streams to preserve accuracy. Data types matching 
the input streams should be used for floating-point types. 

The direction parameter specifies a forward transform, typically used for 
transforming from time-domain data to frequency-domain, or a reverse transform, 
typically for transforming from frequency-domain data to time-domain. 

The post parameter specifies the kind of post-processing operations to perform. 
FFT results are often displayed as magnitude and phase or power density rather 
than the raw complex numbers. The data types and buffer organizations specified 
in the options parameter might be restricted by the choice of post-processing; for 
example, a power-density result never produces a complex-valued output. 

The options parameter provides control over the organization of the input data 
and the output results. The option codes also provide information about data type. 
See Chapter 7 of the Developer’s Toolkit for DAPL Manual for instructions on 
selecting option codes to describe the organization of input and output buffers. The 
additional data type codes specify the data types of the data streams and windowing 
vector.  

 
FFT_WORDTYPE 
FFT_LONGTYPE 
FFT_FLOATTYPE 
FFT_DBLTYPE 
 
FFT_WORDWIN 
FFT_LONGWIN 
FFT_FLOATWIN 
FFT_DBLWIN 
 

 

See Also 
fft_requestfft_requestfft_requestfft_request, rallocrallocrallocralloc 



Function Reference 15 

fftb_postop 

Apply post-processing to an FFT result. 

int fftb_postop (  
FFTB *fft, // FFT control block handle 
GENERIC_PTR  realbuf, // Pointer to storage 
GENERIC_PTR  imagbuf, // Pointer to storage 
int post, 
int options 
); 

 

Parameters 
fft 

Pointer variable containing a handle for the FFT control block to be used. 

realbuf 
Pointer to a data storage area for real-valued terms. 

imagbuf 
Pointer to a data storage area for imaginary-valued terms. 

post 
One of the following codes: 

FFTPOST_REAL 
FFTPOST_CPLX 
FFTPOST_POWER 
FFTPOST_MAGNITUDE 
FFTPOST_MAG_PHASE 
 

options 
“Flag” bits that are combined using bitwise OR operations to select additional 
processing options related to post-processing. One option from each of these 
groups may be selected: 

FFT_SEPARATED 
FFT_PAIRWISE 
 
FFT_HALFOUT 
FFT_FULLOUT 



16 Function Reference 

Return Values 
The function returns a nonzero error code if a parameter error is detected, or a 0 
code if the operation is completed. 

Description 
The function fftb_postopfftb_postopfftb_postopfftb_postop performs post-transform processing on an FFT result 
after FFT computations are completed but before a subsequent FFT is performed 
using the same FFTB configuration block. This operation allows additional 
processing, beyond that done by the original FFT operation. That means it is 
possible to preserve the original transform values and then apply more than one 
style of post-processing without losing any information. 

When the FFTPOST_DEFER option is selected in the call to the fftb_initfftb_initfftb_initfftb_init 
function, the fft_requestfft_requestfft_requestfft_request function does not return any data. Using this option, a 
call to the fftb_postopfftb_postopfftb_postopfftb_postop function is required to access the transform computation 
results. 

The parameters are very similar to the processing options of the fftb_initfftb_initfftb_initfftb_init 
function, but related only to post-transform processing.  

The realbuf and imagbuf fields must specify pointers to data storage areas for 
real-valued and imaginary-valued output terms. The custom command must 
allocate sufficient storage to cover all output requirements. The data type in the 
buffers is determined by the initial configuration and cannot be changed by this 
function. 

The post option specifies the desired post-processing operation. The options 
parameter provides a limited number of options for organizing real and imaginary 
parts of the transform results.  

See Chapter 7 in the Developer’s Toolkit for DAPL Manual for more information 
about the various post-processing options. 

See Also 
fftb_initfftb_initfftb_initfftb_init, fftb_requestfftb_requestfftb_requestfftb_request 



Function Reference 17 

fftb_request 

Initiate FFT processing. 

void  fftb_request (  
FFTB * fft // FFT control block handle 
); 

 

Parameters 
fft 

Pointer variable containing a handle for the FFT control block to be used. 

Return Values 
There is no return value. The results of the FFT computation are returned in the 
FFT control block. 

Description 
The function fftb_requestfftb_requestfftb_requestfftb_request initiates FFT computation, using the configuration 
previously established by the fftb_initfftb_initfftb_initfftb_init function. The custom command is 
required to place the input data for the FFT operation into the storage arrays prior 
to making this function call. 

There is no difference between this function and the older fft_requestfft_requestfft_requestfft_request function. 
The alternate form simply provides consistent naming conventions. 

See Also 
fftb_initfftb_initfftb_initfftb_init    



18 Function Reference 

firb_advance 

Bypass selected FIR filter computations for data reduction or decimation. 

int  firb_advance (  
FIRB *fir, // FIR filter control block handle 
int count 
); 

Parameters 
fir 

Pointer variable containing a handle for the FIR filter control block to be 
adjusted. 

count 
A value specifying the number of items to be removed from the data source. 

Return Values 
The function returns the number of additional items that must be removed from the 
data source. 

Description 
The function fir_advancefir_advancefir_advancefir_advance is an optional function to advance data through a FIR 
filter internal shift register, bypassing selected filtering operations. A normal 
filtering operation removes old data from the filter, adds new data to replace them, 
and then performs filter computations. The firb_advancefirb_advancefirb_advancefirb_advance function removes old 
data, without replacing with new data, and without performing any filter 
computations. 

The function firb_advancefirb_advancefirb_advancefirb_advance reports the number of additional items that must be 
removed from the data source. If just a few items are bypassed, and the filter shift 
register is not emptied, the function returns the value zero, and filtering resumes 
automatically when enough new data are provided by function firb_requestfirb_requestfirb_requestfirb_request to 
refill the shift register. If the count is larger than the number of items present in 
the shift register, firb_advancefirb_advancefirb_advancefirb_advance reports the number of additional items that must 
be skipped from the source stream by the calling program before refilling the filter 
shift register. 



Function Reference 19 

The most common application of function firb_advancefirb_advancefirb_advancefirb_advance is data skipping, for 
example, capturing data at a high sampling rate to preserve high-frequency 
information, but eliminating large blocks to avoid excessive data volume. Another 
application is specialized decimating filters. 

There is no difference between this function and the older fir_advancefir_advancefir_advancefir_advance function. 
The alternate form simply provides consistent naming conventions. 

 

See Also 
firb_requestfirb_requestfirb_requestfirb_request 



20 Function Reference 

firb_change 

Modify FIR characteristics. 

int firb_change (  
FIRB *fir, // FIR filter control block handle 
GENERIC_PTR  coeffs, // Pointer to coefficient array 
int length, 
GENERIC_SCALAR  scale, // Shift or gain adjustment 
int decimate 
); 

Parameters 
fir 

Pointer variable containing a handle for the FIR filter control block to be 
modified. 

coeffs 
An array containing the coefficients that determine the computational 
characteristics of the filter. 

length 
A value specifying the number of terms in the coeffs array, up to 1024. 

scale 
A value specifying a non-negative scaling constant. For fixed-point data types, it 
specifies a final scaling shift. For floating-point data types, it specifies a final 
scaling divisor. 

decimate 
A non-negative number specifying a decimation rate. 

Return Values 
If the function succeeds and the change is installed successfully, the return value is 
0. If the space previously allocated for the filter is not sufficient, or if any of the 
new filter characteristics are invalid, a nonzero error code is returned. 

Description 
The function firb_changefirb_changefirb_changefirb_change changes filter characteristics after initialization by the 
firb_initfirb_initfirb_initfirb_init function. The parameters of this function correspond closely to the 



Function Reference 21 

parameters of the firb_initfirb_initfirb_initfirb_init function. This function modifies the FIRB content 
but does not allocate any new elements or change data type. 

This function should be used with care, because it can affect efficiency, output 
continuity, phase, and latency. For example, if the filter is made longer, the 
internal shift register previously fully filled is suddenly not fully filled. The filter 
will cease generating output values until a number of new samples are provided. 
Similarly, reducing the filter length can leave the filter shift register somewhat 
overfilled, causing an unexpected burst of output results the next time a filtering 
operation is requested. The filter reserves extra space for computational efficiency 
when it is initialized, but efficiency may drop if that extra space is consumed by a 
longer filter structure. Usually, the best strategy for changing filter characteristics 
is to keep the length the same, with enough padding zeroes at the ends to allow for 
filter length changes. 

The safest way to “tune” coefficients is to compute them in separate array storage, 
and then switch to the new array with a call to fir_changefir_changefir_changefir_change. However, it is 
possible to adjust coefficient values in their original storage provided that no 
concurrently active filters share the coefficients. 

All parameter values must be specified. If some of the parameters are unchanged, 
specify the old values. 

See Also 
firb_initfirb_initfirb_initfirb_init 



22 Function Reference 

firb_init 

Prepare for FIR filtering by defining a FIR control block. 

FIRB *firb_init (  
GENERIC_PTR  coeffs, // Pointer to coefficient array 
int length, 
GENERIC_SCALAR  scale, 
int decimate, 
int option 
); 

Parameters 
coeffs 

A generic array containing the coefficients that determine the computational 
characteristics of the filter. 

length 
A value specifying the number of terms in the coeffs array, up to 1024. 

scale 
A value specifying a non-negative scaling constant. For fixed-point data types, it 
specifies a final scaling shift. For floating-point data types, it specifies a final 
scaling divisor.  

decimate 
A non-negative number specifying a decimation rate. 

option 
A flag indicating the type of data in the input stream, coefficient vector, and 
scaling factor. It must be one of the following: 

FIR_WORDTYPE 
FIR_LONGTYPE 
FIR_FLOATTYPE 
FIR_DBLTYPE 
 

Return Values 
The function returns a pointer containing a handle value required by all subsequent 
filter operations. It is non-NULL if allocation and initialization are successful. 



Function Reference 23 

Description 
The function firb_initfirb_initfirb_initfirb_init allocates a FIR digital filter control block structure and 
initializes it with the options that define the characteristics of the filter. Actual 
filtering operations are performed later. 

The coefficients, which determine the computational characteristics of the filter, 
are provided to the function firb_initfirb_initfirb_initfirb_init in the array coeffs. The length 
parameter specifies the number of terms in the coeffs array, up to 1024. The 
length of the filter equals the length of this vector. The data type of the coefficients 
must match the data type of the data stream to be filtered. 

The scale parameter specifies a non-negative scaling constant. The scaling is 
applied after other filter computations, dividing the intermediate filter result by the 
specified amount to produce the final filter result. For fixed-point data types, the 
scale factor must be an exact integer power of 2 and smaller than the length 
parameter. The final scaling operation is bypassed if the scale parameter has a 
value 1 or 0, interpreted as “divide by 1” and “no scaling” respectively. For 
floating-point data types, the scaling factor also specifies a magnitude reduction, 
but it is not restricted to a power of 2, and it must have the data type that matches 
the data stream. For no scaling, specify the value 1.0. 

The decimate parameter is a non-negative number. If the decimate parameter 
is greater than 1, one filter value is computed and then decimate-1 values are 
skipped, so that decimate values are consumed for each filter output value 
generated. A decimate value of 1 or 0 indicates that no decimation is to be 
applied, and each input value will generate one corresponding output value. 

The option parameter is a code specifying the data type for the filtering 
operation. For consistent indexing and preservation of precision, the data types of 
the data stream, coefficient vector, and scaling divisor must all match the specified 
data type.  

The returned value is a handle required by all subsequent filter operations. If this 
returned pointer is a NULL pointer, there is a parameter error, and the firb_initfirb_initfirb_initfirb_init 
function was unable to configure a filter as specified. 

See Chapter 7 of the Developer’s Toolkit for DAPL Manual for more information 
about the meaning and application of the various configuration options. 

See Also 
firb_changefirb_changefirb_changefirb_change, firb_requestfirb_requestfirb_requestfirb_request 



24 Function Reference 

firb_request 

Perform FIR filter processing using data provided. 

int  firb_request (  
FIRB * fir, // FIR filter control block handle 
GENERIC_PTR  data, // Data to be filtered 
int count 
); 

Parameters 
fir 

Pointer variable containing a handle for the FIR filter control block to be used. 

data 
An array containing the data to which the filter is applied. Result values will 
replace the original data in this array. 

count 
The number of filter input values provided in the data array. 

Return Values 
If the amount of data provided in the data array is not sufficient to fill the internal 
filter shift register, and computations cannot proceed, a 0 is returned. If there is 
sufficient data in the shift register to perform some filtering computations, the 
returned value indicates the number of results generated. 

Description 
The function firb_requestfirb_requestfirb_requestfirb_request initiates digital filter computations, using the 
configuration previously established by the firb_initfirb_initfirb_initfirb_init function. The filter 
operation is applied to data provided in the data array. The count parameter 
specifies how many items are provided to the filter. Result values replace the 
original data in the data array. The number of output terms computed and 
buffered is returned. The output data type matches the data type of the input stream 
as established by the firb_initfirb_initfirb_initfirb_init function. Contents of any data array locations 
not used for returned results are undefined. 



Function Reference 25 

See Also 
firb_initfirb_initfirb_initfirb_init 


	Supplement to�Developer’s Toolkit for DAPL Manual
	Overview
	Who Might Benefit?
	What Systems Are Required?
	The New Function Set
	An FFT Example
	An FIR Filtering Example
	Function Reference
	fftb_chngbuf
	fftb_init
	fftb_postop
	fftb_request
	firb_advance
	firb_change
	firb_init
	firb_request



