

Copyright & Trademarks

This manual contains proprietary information which is protected by copyright. All
rights are reserved. No part of this manual may be photocopied, reproduced, or
translated to another language without prior written consent of Microstar Laboratories,
Inc.

Copyright © 1997-2003

Microstar Laboratories, Inc.
2265 116 Avenue N.E.
Bellevue, WA 98004
Tel: (425) 453-2345
Fax: (425) 453-3199
http://www.mstarlabs.com

Microstar Laboratories, DAPcell, Data Acquisition Processor, DAP, DAPL, and
DAPview are trademarks of Microstar Laboratories, Inc.

Microstar Laboratories requires express written approval from its President if any
Microstar Laboratories products are to be used in or with systems, devices, or
applications in which failure can be expected to endanger human life.

Microsoft, MS, and MS-DOS are registered trademarks of Microsoft Corporation. Windows is a trademark
of Microsoft Corporation. IBM is a registered trademark of International Business Machines Corporation.
Intel is a registered trademark of Intel Corporation. Novell and NetWare are registered trademarks of
Novell, Inc. Other brand and product names are trademarks or registered trademarks of their respective
holders.

DAPtools for Agilent VEE

The Visual Engineering Environment by Agilent VEE, formerly HP VEE, is an iconic
programming language for problem solving. DAPtools for Agilent VEE provides a
collection of VEE objects that support communication with a Data Acquisition
Processor installed in a PC compatible computer running Agilent VEE for Windows.
The objects in DAPtools for Agilent VEE configure a Data Acquisition Processor
(DAP) for specific tasks, and to transfer data between a DAP and the Agilent VEE
workspace.

New Features for Version 2.00

This package works with Agilent VEE version 6.00 or later.

The name of this package has been changed to DAPtools for Agilent VEE.

For previous versions, examples can be run after copying the DAP directory to the
Agilent VEE install directory. In this release, all examples can be run from the
DAPtools for Agilent VEE install directory.

Added support for new DAPIO32 DLL functions. Please see DAPIO32 Reference for
new functions

Added a wrapper DLL called MSLAPP DLL to support more functions in DAPIO32
DLL. Please see MSLAPP Reference for a list of functions.

Added more predefined objects.

Added application example APP10.VEE and APP11.VEE.

Installation

Before using DAPtools for Agilent VEE, your DAP board and DAPCell driver should
be installed and running properly. If your DAP is not installed yet, refer to the
Microstar Laboratories Hardware Manual for instructions.

Installing DAPtools for Agilent VEE
1. Make sure your DAP and the DAPCell driver are installed and fully operational.
2. Verify that Agilent VEE for Windows is installed and working properly.
3. Run SETUP.EXE in the root directory of the distributed Standard or Professional

CD.
4. Select DAPtools for Agilent VEE on the right hand side of the startup screen.
5. When prompted, select the destination directory for DAPtools for Agilent VEE.

The default is
C:\Program Files\Microstar Laboratories\DAPtools\HPVEE32

Customize VEE Menu
The Agilent VEE menu can be customized by adding DAP menu. To do this, copy
DAP.MNU from DAPtools for Agilent VEE install directory to the Agilent VEE install
directory. If DAP does not appear in the menu, run the registry file, for example,
VEE600.REG for VEE Pro version 6.0, under Agilent VEE install directory to update
registry.

Communicating with a DAP in Agilent VEE

Agilent VEE uses DAPIO32 library functions to communicate with a Data
Acquisition Processor. The programming steps required in Agilent VEE are the same
as for other programming languages:

1. Import DLLs.
2. Open handles to DAP communication pipes.
3. Send a RESET command to the DAP.
4. Flush old data that may be left in the communication pipes from earlier runs.
5. Configure the DAP with new DAPL commands.
6. Send a START command to the DAP to start acquiring data.
7. Read and write data through the DAP communication pipes.
8. Send a STOP command to the DAP.
9. Close the handles.

DAPtools for Agilent VEE provides special objects that perform most of the steps
above. An Import Libraries object performs step 1. A DAP Init object performs steps
2 through 5. Several objects are available for reading and writing data depending on
the specific behavior required as described in the following section. A DAP Close
object performs steps 8 and 9.

Data Format

DAPtools for Agilent VEE provides objects to transfer 16-bit word and 32-bit long
data between a DAP and Agilent VEE. The application example APP06.VEE shows
how to transfer 32-bit long data by using DAP Buffer Get and DAP Buffer Put. The
application example APP09.VEE, which is a modified version of APP06.VEE,
increases the data transfer efficiency by using DAP Buffer Get With Timeout and
DAP Buffer Put With Timeout which provide timeout capability.

The default data format for DAPL is 16-bit integer. The conversion of 16-bit to 32-bit
integer may decrease the throughput from a DAP. The application example
APP10.VEE shows how to transfer 16-bit word data by using DAP Data Get.

DAPIO32 DLL Function Usage

The objects provided in DAPtools for Agilent VEE call functions in DAPIO32.DLL.
A complete function reference is provided with the DAPIO32 library. It includes an
on-line Windows help file and a technical note which describes the parameters and
usage of each function. It is recommended to use the DAPIO32 reference for
information when uncertain how a DAP function works in Agilent VEE.

DAPIO32 Reference

The DAPIO32 reference uses C data types when specifying the type of each
parameter. Here is a brief cross references to help determine corresponding Agilent
VEE data types:

C Data Type Agilent VEE Data Type
Int Int32
HDAP Int32
void * Int32 1D Array – in most cases
char* Text
BOOL Int32
Unsigned long Int32 – works in most cases
short * Int16
Long Int32
TDapBufferGetEx See APP06.VEE for an example of using this

structure in Agilent VEE. See DAPIO32 Reference
Manual for details.

TdapBufferPutEx See APP06.VEE for an example of using this
structure in Agilent VEE. See DAPIO32 Reference
Manual for details.

DAPIO32 DLL Routines Objects in DAPIO32.VH
DapHandleClose DapHandleClose
DapHandleOpen DapHandleOpenA
DapInputAvail DapInputAvail
DapOutputSpace DapOutputSpace
DapBufferGet DapBufferGet
DapBufferGetEx DapBufferGetEx
DapBufferPut DapBufferPut

DapBufferPutEx DapBufferPutEx
DapConfig DapConfigA
DapConfigParamsClear DapConfigParamsClear
DapConfigParamsSet DapConfigParamsSetA
DapConfigRedirect DapConfigRedirectA
DapInputFlush DapInputFlush
DapLastErrorTextGet DapLastErrorTextGetA
DapStringGet DapStringGetA
DapStringPut DapStringPutA
DapLineGet DapLineGetA
DapLinePut DapLinePutA
DapModuleInstall DapModuleInstallA (new)
DapModuleUninstall DapModuleUninstallA (new)
DapModuleLoad DapModuleLoadA (new)
DapModuleUnload DapModuleUnloadA (new)
DapComPipeCreate DapComPipeCreateA (new)
DapComPipeDelete DapComPipeDeleteA (new)
DapOutputEmpty DapOutputEmpty (new)
DapHandleQueryInt32 DapHandleQueryInt32A (new)
DapHandleQueryInt64 DapHandleQueryInt64A (new)
DapReset DapReset (new)
DapReinitialize DapReinitialize (new)

MSLAPP Reference

Due to the data types in Agilent VEE, a wrapper DLL called MSLAPP is used to
include interface functions in DAPIO32. For example, the structure
TDapPipeDiskLog for the function DapPipeDiskLog in DAPIO32.DLL has an
element of type pointer to a string, which is not supported in the cluster structure
(similar to a structure in C) in Agilent VEE. In this case, a wrapper function
MslDapPipeDiskLog is implemented to accept the individual elements and pass them
to DapPipeDiskLog. All wrapper functions have the prefix Msl with the function for
which they interface. For example usage, please see APP10.VEE and APP11.VEE.

DAPIO32 DLL Routines Objects in MSLAPP.VH
DapBufferGetEx MslDapBufferGetEx
DapBufferPutEx MslDapBufferPutEx
DapPipeDiskLog MslDapPipeDiskLog
DapPipeDiskFeed MslDapPipeDiskFeed
DapCommandDownload MslDapCommandDownload
DapHandleQuery MslDapHandleQueryString

DAPtools for Agilent VEE Object References

DAP communication in Agilent VEE is made easy by using several predefined
objects. Objects can be re-used by copy and paste to build your own application, or
they can be merged from the DAP menu if Agilent VEE menu has been customized as
described in installation. The following section describes each object. A later section,
Application Examples, provides examples on how these objects are used.

Object Name Descriptions
Get Current Directory Returns the path of the current working

directory.
Import Libraries Imports all libraries necessary for

communicating with a DAP.
DAP Init Initializes communication with a DAP.
DAP Close Terminates communication with a DAP.
DAPL Edit A text editor for DAPL commands.
DAP Check Message Checks for messages from a DAP and

displays them in a dialog box.

DAP Buffer Get Reads a block of 32-bit data from a DAP.
DAP Buffer Get With Timeout Reads a block of 32-bit data from a DAP

with timeout.
DAP Data Get Reads a block of 16-bit data from a DAP

with timeout.
DAP Pipe Disk Log Logs data to a disk file at high speed.

DAP Buffer Put Sends a block of 32-bit data to a DAP.
DAP Buffer Put With Timeout Sends a block of 32-bit data to a DAP with

timeout.

DAP Create And Open Com Pipe Creates an additional communication pipe

and opens its a handle.
DAP Close And Delete Com Pipe Closes the handle to a communication pipe

and deletes it.

DAP Custom Command Download Downloads a binary file for 16-bit custom

command to a DAP.
DAP Module Install Installs a 32-bit module to a DAP.

Get Current Directory

Get Current Directory returns the current working directory.

Parameters
(None)

Return Values
CurDir

File path of the current directory.

Descriptions
This object returns the current directory the application is running on.

Import Libraries

Import Libraries imports all necessary libraries to an application.

Parameters
(None)

Return Values
(None)

Descriptions
This object imports the following DLLs, which an application may use to
communicate with a DAP board in Agilent VEE workspace.

DAPIO32 DLL: interface between applications and the DAP.

MSLAPP DLL: wrapper DLL for some functions in DAPIO32 DLL.

DAPVEE32 DLL: interface between Windows and Agilent VEE.

DAP Init

DAP Init performs all of the initialization required to communicate with a DAP.

Parameters
FileName

Name of file to be sent to a DAP.

Return Values
(None)

Descriptions

At run time, this object opens DAP handles, sends a RESET command, flushes old
data from the communication pipes, and configures the DAP with the DAPL
command file from DAP Edit object. If DAP Init is unable to find the specified
DAPL file it will look in the current directory before displaying an error message.

This object has no output. DAP handles are stored in global variables. For this reason
it is necessary to design Agilent VEE programs so that DAP Init operates before
other functions that require DAP handles.

To communicate with two or more DAP boards, make a copy of DAP Init and
double click on the copy to modify its diagram. Double click on the “Open all
DAP handles” icon. Modify the DAP communication pipe names to reflect the new
DAP. For example change \\.\Dap0\$Sysin to \\.\Dap1\$Sysin to
communicate with DAP 1 instead of DAP 0. Also change the global variable names to
match the DAP number. Create a new DAP Close object with corresponding changes.
When using objects that communicate with a DAP, change the DAP handle names to
reference the appropriate DAP.

DAPL Edit

DAPL Edit assists in DAPL command file selection and editing.

Parameters
(None)

Return Values
Filename

File name of DAPL command file being loaded to a DAP.

Descriptions
A DAPL command file may be specified in several ways. A file name may be typed
in the Edit field. Pressing the button named “Select” displays a common file open
dialog box in which you can choose an existing DAPL command file. Pressing the
button named “Edit” loads the DAPL file into the DAPLPad editor which provides
help for DAPL commands. If a full path is not supplied for the DAPL file name, this
object looks in the current directory for the file.

DAP Close

DAP Close implements the necessary operations for terminating DAP
communication.

Parameters
(None)

Return Values
(None)

Descriptions

This object sends a STOP command to the DAP and closes all the handles to DAP
communication pipes. This object has no input or output. It obtains handles through
global variables.

It is important for DAP Close to be executed at the end of a run to ensure the DAP is
stopped properly and the handles are closed. If the handles are not closed properly, it
may cause problem for the next run. If this happens, the DAPCell service needs to be
restarted through the Control Panel | Data Acquisition Processor. For this reason, it is
important to use a Stop button in the code diagram to allow DAP Close to execute.
Pressing the stop button in the Agilent VEE toolbar halts execution and DAP Close
may not be executed.

DAP Check Message

DAP Check Message checks if a message is available on the DAP text
communication pipe.

Parameters
(None)

Return Values
(None)

Descriptions

This object does not have any inputs as it obtains a handle to a communication pipe
through global variable. If a message exists, it will be displayed in a message dialog
box.

This object reads from \\.\Dap0\$Sysout, the default text communication pipe at
local DAP0. To read from a different communication pipe or DAP board, make a
copy of DAP Check Message and double click on the copy to modify its diagram.
Modify the DAP handle variable name to reference an appropriate communication
pipe.

DAP Buffer Get

DAP Buffer Get reads a block of 32-bit data from a DAP binary communication
pipe.

Parameters
iLength

Specifies the number of data to be read each time this object is executed.

pvBuffer
Points to the buffer to receive the data from the DAP board.

Return Values
pvBuffer

Points to the buffer that contains data from the DAP board.

Descriptions

DAPBufferGet reads a block of 32 bit data from a DAP binary communication pipe.
This object reads from \\.\Dap0\$Binout, the default binary communication pipe
for reading at local DAP0. It obtains handles to target pipes through global variables.
The parameter iLength specifies number of data being read when this object is
executed. The parameter pvBuffer provides a buffer for data returned from the
target handle.

This object reads 32-bit values only. The DAP must be configured to return 32-bit
values to $Binout. Internally the DAP Buffer Get object calls the DAPIO32
function DapBufferGet. Note that DapBufferGet does not perform 16-bit to 32-bit
conversion and it has no timeout features. Please refer to DAPIO32 Reference Manual
for more information about DapBufferGet.

For example usage, please see APP01.VEE.

DAP Buffer Get With Timeout

DAP Buffer Get With Timeout, which provides timeout capability, reads a block
of 32-bit data from a DAP binary communication pipe.

Parameters
Number of Bytes

Specifies the number of data to be read each time this object is executed.

pvBuffer
Points to a buffer to receive data from a DAP board.

Return Values
pvBuffer

Points to the buffer that contains data from the DAP board.

Descriptions

This object operates much like DAP Buffer Get except it provides a way to return if
no data values are available to read. Internally, this object calls DapBufferGetEx in
DAPIO32 DLL. Inside this object, a Struct object is used to implement
TDapBufferGetEx, a required input structure to DapBufferGetEx. In a Struct
object, the first entry corresponds to iInfoSize in TDapBufferGetEx. The second
and third entries correspond to iBytesGetMin and iBytesGetMax respectively. The
fourth entry corresponds to iReserved1, which must be set to zero. The fifth and
sixth entries correspond to dwTimeWait and dwTimeOut. Please refer to DAPIO32
Reference Manual for more information about DapBufferGetEx.

For example usage, please see APP09.VEE

DAP Data Get

DAP DATA Get reads a block of 16-bit data from the DAP binary communication
pipe.

Parameters
NunCh

Specifies the number of channel to read each time this object is executed.

NumData
Specifies the number of data bytes to read from each channel each time this
object is executed

Return Values
pvBuffer

Points to the buffer to receive data from the DAP board.

Descriptions

This object reads a block of data from \\.\Dap0\$Binout, the default binary
communication pipe at local DAP0. It obtains handles to the target pipes through
global variables.

This object allows faster data transfer between a DAP and PC as data are being
transfer in 16-bit, the default data type in DAPL through a word pipe. Internally this
object calls the function MslDapBufferGetEx, which performs necessary data type
conversion between 16-bit and 32-bit integer, in the wrapper MSLAPP DLL.
MslDapBufferGetEx in turn calls DapBufferGetEx, which transfer data between
a DAP and a PC, in DAPIO32.DLL. This object provides timeout features so that if
no data is available for 100 milliseconds it returns whatever data is available. The
value of timeout period can be adjusted by double-clicking on DAP Data Get and
changing the timeout and timewait constants. Please refer to DAPIO32 Reference
Manual for more information about DapBufferGetEx.

To transfer 32-bit integer from a DAP, please use DAP Buffer Get or
DAP Buffer Get With Timeout.

For example usage, please see APP10.VEE.

DAP Pipe Disk Log

DAP Pipe Disk Log configures and initiates a high-speed pipe disk logging session
between a DAP communication pipe and a disk file.

Parameters
(None)

Return Values
(None)

Descriptions

Before this object could run, DAPCell service needs to be configured correctly. Please
go to the Control Panel | Data Acquisition Processor | Disk I/O | Server Disk I/O
Options | Disk Logging | Permission, select “Normal” to enable disk logging property.
A valid file path needs to be entered as “Default path”.

This object configures a DAP for high speed logging to a disk file directly. This
object reads from \\.\Dap0\$Binout, the default binary communication pipe at
local DAP0, and write data to a disk file in the background in order to prevent
interruption from other PC programs. It does not have any inputs as it obtains DAP
handles to target pipes through global variables. Internally, it calls
MslDapPipeDiskLog in the wrapper MSLAPP DLL. MslDapPipeDiskLog in turn
calls DapPipeDiskLog in DAPIO32 DLL. Please refer to DapPipeDiskLog in
DAPIO32 Reference Manual for more options on monitoring disk logging behaviors.

For example usage, please see APP10.VEE.

DAP Buffer Put

DAP Buffer Put writes a block of 32-bit data to a DAP binary communication pipe.

Parameters
iLength

Specifies the number of data to write each time this object is executed.

pvBuffer
Data buffer filled with data to be sent to the DAP board.

Return Values
Ret

Number of bytes written to the target pipe if successful; -1 if function failed.

Descriptions

This object writes a block of 32-bit data to \\.\Dap0\$Binin, the default binary
communication pipe for writing at local DAP0. It obtains handle to target pipes
through global variables. The parameter iLength specifies number of data being
written to the communication pipe when this object is executed. The parameter
pvBuffer contains data being sent to the DAP. To write to a different DAP or
communication pipe, double click on the object and modify its diagram.

The object sends 32-bit values only. The DAP must be configured to read 32-bit
values from $Binin. Internally, this object calls DapBufferPut in DAPIO32 DLL.
Note that DapBufferPut does not perform 32-bit to 16-bit conversion and it has no
timeout features. Please refer to DAPIO32 Reference Manual for more information
about DapBufferPut.

For example usage, please see APP06.VEE.

DAP Buffer Put With Timeout

DAP Buffer Put With Timeout, which provides timeout capability, writes a
block of 32-bit data to a DAP binary communication pipe.

Parameters
iLength

Specifies the number of data bytes to write each time this object is executed.

pvBuffer
Data buffer filled with data to be sent to the DAP board.

Return Values
Error

Number of bytes written to the target pipe if successful; -1 if function failed.

Descriptions

This object operates much like DAP Buffer Put except it provides a way to return if
no there is no space to write data to the DAP. Internally, this object calls
DapBufferPutEx in DAPIO32 DLL. Inside this object, a Struct object is used to
implement TDapBufferPutEx, a required input structure to DapBufferPutEx. In a
Struct object, the first entry corresponds to iInfoSize in TDapBufferPutEx. The
second entry corresponds to iBytesPut. The third and fourth entries correspond to
dwTimeWait and dwTimeOut respectively. Please refer to DAPIO32 Reference
Manual for more information about DapBufferPutEx.

For example usage, please see APP09.VEE

DAP Create And Open Com Pipe

DAP Create And Open Com Pipe creates a binary communication pipe and opens
its handle.

Parameters
(None)

Return Values
(None)

Descriptions

This object creates \\.\Dap0\Cp2Out, a binary communication pipe Cp2Out at
local DAP0. It opens a handle to Cp2Out and stores the handle in a global variable.
This object should be called before DAP Init. Internally, this object calls
DapComPipeCreate in DAPIO32 DLL. To create a different communication pipe,
make a copy of this object, double-click on the copy to modify its diagram and change
the global variable names to match the DAP number. Also, create a new
DAP Close And Delete Com Pipe object with corresponding changes. Please refer to
DAPIO32 Reference Manual for more information about DapComPipeCreate.

For example usage, please see APP10.VEE.

DAP Close And Delete Com Pipe

DAP Close And Delete Com Pipe closes the handle to the communication pipe
and deletes it.

Parameters
(None)

Return Values
(None)

Descriptions

This object closes handle to Cp2Out, which has been created and opened by
DAP Create And Open Com Pipe object, and deletes it from local DAP0. This object
does not have any inputs as it obtains the handle through a global variable. Internally,
this object calls DapComPipeDelete in DAPIO32 DLL. Please refer to DAPIO32
Reference Manual for more information about DapComPipeDelete.

For example usage, please see APP10.VEE.

DAP Custom Command Download

DAP Custom Command Download downloads a custom command to a DAP board.

Parameters
FileName

Path to a custom command binary file to be downloaded.

CmdName
Name of a custom command to be downloaded.

Return Values
ret

It is 1 if the download is successful, otherwise, returns 0.

Descriptions

This object downloads a 16-bit binary custom command file to a DAP board. This
object opens a DAP handle to \\.\Dap0, which represents local DAP 0. Then it
downloads a binary file FileName for a command named as CmdName. When
download is completes, it closes the DAP handle. Internally, this object calls
DapCommandDownload in DAPIO32 DLL. Please refer to DAPIO32 Reference
Manual for more information about DapCommandDownload. This object is provided
for backward compatibility with 16-bit custom commands. Any new 32-bit command
module should use DAP Module Install.

If the download fails, this object returns 0 in its output parameter ret. This object
provides an error handling on querying the last error message from the DAPCell
services and displays the messages in a message box.

For example usage, please see APP11.VEE

DAP Module Install

DAP Module Install installs a 32-bit custom command module to a DAP board.

Parameters
FileName

Filename of the module to install.

Return Values
ret

It is 1 if the installation is successful, otherwise, returns 0.

Descriptions

This object opens a handle to \\.\Dap0, which represents local DAP 0. Then it
downloads the 32-bit custom command module FileName, and closes the handle.
Internally, this object calls DapModuleInstall in DAPIO32 DLL. Please refer to
DAPIO32 Reference Manual for more information about modules and related
services.

If the installation fails, this object returns 0 in its output parameter ret. This object
provides an error handling on querying the last error message from the DAPCell
services and displays the messages in a message box.

For example usage, please see APP11.VEE.

Application Examples

DAPtools for Agilent VEE32 includes several examples that show how to
communicate with a DAP board. The examples are located in the DAP directory
under the directory where DAPtools for Agilent VEE32 is installed. The default
location is

C:\Program Files\Microstar Laboratories\Daptools\Hpvee32

When running the following examples, it is highly recommended to stop the
application by pressing a Stop button on the Main panel to close handles to the DAP
properly. See DAP Close for more information.

Example Descriptions
APP01.VEE DAP Communication.
APP02.VEE Reading Two or More Channels.
APP03.VEE Text Data Communication.
APP04.VEE Saving Data to a Binary File.
APP05.VEE Reading Data from a Binary File.
APP06.VEE Transferring 32-bit Data.
APP07.VEE Added Timeout Capability.
APP08.VEE Check DAP Message.
APP09.VEE Increasing efficiency on Data Transfer.
APP10.VEE High Speed Pipe Disk Logging.
APP11.VEE Installing a Custom Command.

APP01.VEE: DAP Communication

APP01.VEE shows how the DAP objects work together to create an application that
samples one channel and displays the data in a Strip Chart. An Until Break object
causes the application to read blocks of data repeatedly until a Stop button is pressed.

APP02.VEE: Reading Two or More Channels

APP02.VEE shows a convenient way to read two or more channels of data. A
multidimensional array is passed to the DAP Buffer Get object, which allows the
arrays to be separated and processed individually.

APP03.VEE: Text Data Communication

APP03.VEE sends a HELLO command and displays the results in an alphanumeric
display object to show how to transfer text messages.

APP04.VEE: Saving Data to a Binary File

APP04.VEE is the same as APP01.VEE with one addition. A To File object is
added for logging data to a file.

APP05.VEE: Reading Data from a Binary File

APP05.VEE reads data from the file created in APP04.VEE.

APP06.VEE: Transferring 32 bit data

APP06.VEE shows how to transfer 32-bit data to and from a DAP. It reads the file
created by APP04.VEE, sends the data to the DAP, and reads the processed results
from the DAP.

APP07.VEE: Added Timeout Capability

APP07.VEE is similar to APP02.VEE with one modification. Instead of calling the
DAPIO32 function DapBufferGet, DapBufferGetEx, is called to provide a timeout
when no data is available from the DAP. See the object
DAP Buffer Get With Timeout and DAP Buffer Put With Timeout for details.

App08.VEE: Check DAP Message

APP08.VEE is the same as APP07.VEE with one addition. It shows how to use the
DAPIO32 function DapInputAvail to check for DAP messages on the fly. See the
object DAP Check Message for details.

App09.VEE: Increasing efficiency on Data Transfer

APP09.VEE is similar to APP06.VEE with increased efficiency. Instead of calling the
DAPIO32 functions DapBufferPut and DapBufferGet, DapBufferPutEx and
DapBufferGetEx are called to allow specifying two time-out parameters to control the
behavior of data transfer options. See the object DAP Buffer Get With Timeout and
DAP Buffer Put With Timeout for details.

App10.VEE: High Speed Pipe Disk Logging

APP10.VEE shows how to initiates a high speed DAPCell disk logging session
between a DAP communication pipe and a disk file. The disk logging operation is
carried at the background to avoid any interruption from the PC program. The disk
file is created under the default logging path, which is set through the Control Panel |
Data Acquisition Process | Disk I/O. In this example, a fraction of data will be sent
through an additional com-pipe to the PC for real-time display in a strip chart. The
additional com-pipe is created at the beginning of the example, and it will be deleted
upon exiting the example. During disk logging, this example queries for number of
bytes being logged to the disk file continuously. Please use the STOP button on the
main panel to terminate pipe disk logging. See DAP Pipe Disk Log,
DAP Create And Open Com Pipe and DAP Close And Delete Com Pipe for details.

Unlike other examples, the data being transferred in this example is in 16-bit instead
of 32-bit. See DAP Data Get for details.

To run this example, DAPcell driver needs to be installed and running properly.
Under the Control Panel | Data Acquisition Processor | Disk I/O, the permission level
has to be either “Restricted” or “Normal”. A valid path has to be entered for Default
path for disk logging.

App11.VEE: Install a Custom Command

APP11.VEE shows how to install a 32-bit custom command module, usually with
.DLM as extension of a filename, to a DAP board. A module can also be installed
through the START | Control Panel | Data Acquisition Processor | Modules. See
DAP Module Install for details.

This example also show how to download a 16-bit custom command (obsolete) to a
DAP board. The binary file DEXPAND.BIN can be found in \Dap\Dapl2000 or
\Dap\Dapl4x of any of the distributed CD. Before running this example, please copy
the binary file from the CD to C:\Program Files\Microstar Laboratories.

	Copyright & Trademarks
	DAPtools for Agilent VEE
	New Features for Version 2.00
	Installation
	
	Installing DAPtools for Agilent VEE
	Customize VEE Menu

	Communicating with a DAP in Agilent VEE
	Data Format

	DAPIO32 DLL Function Usage
	DAPIO32 Reference
	MSLAPP Reference

	DAPtools for Agilent VEE Object References
	Get Current Directory
	Import Libraries
	DAP Init
	DAPL Edit
	DAP Close
	DAP Check Message
	DAP Buffer Get
	DAP Buffer Get With Timeout
	DAP Data Get
	DAP Pipe Disk Log
	DAP Buffer Put
	DAP Buffer Put With Timeout
	DAP Create And Open Com Pipe
	DAP Close And Delete Com Pipe
	DAP Custom Command Download
	DAP Module Install

	Application Examples
	APP01.VEE: DAP Communication
	APP02.VEE: Reading Two or More Channels
	APP03.VEE: Text Data Communication
	APP04.VEE: Saving Data to a Binary File
	APP05.VEE: Reading Data from a Binary File
	APP06.VEE: Transferring 32 bit data
	APP07.VEE: Added Timeout Capability
	App08.VEE: Check DAP Message
	App09.VEE: Increasing efficiency on Data Transfer
	App10.VEE: High Speed Pipe Disk Logging
	App11.VEE: Install a Custom Command

