
DAPL 3000 Manual

Data Acquisition Processor
Analog Accelerator Series

Version 1.00

Microstar Laboratories, Inc.

This manual contains proprietary information which is protected by copyright. All rights are reserved. No part of
this manual may be photocopied, reproduced, or translated to another language without prior written consent of
Microstar Laboratories, Inc.

Copyright © 1985-2009

Microstar Laboratories, Inc.
2265 116 Avenue N.E.
Bellevue, WA 98004
Tel: (425) 453-2345
Fax: (425) 453-3199
http://www.mstarlabs.com

Microstar Laboratories, Data Acquisition Processor, DAPserver, DAP, xDAP, iDSC, DAPL, DAPL 3000, DAPcell,
DAPstudio, and DAPview are trademarks of Microstar Laboratories, Inc.

Microstar Laboratories requires express written approval from its President if any Microstar Laboratories products
are to be used in or with systems, devices, or applications in which failure can be expected to endanger human life.

Microsoft and Windows are trademarks of Microsoft Corporation. IBM is a registered trademark of International Business Machines Corporation.
Intel is a registered trademark of Intel Corporation. Other brand and product names are trademarks or registered trademarks of their respective
holders.

Part Number MSDAPL3000M100

Contents 3

Contents

Contents ...3
Section I. Overview ..11
1. Introduction ...13

Scope of This Manual ...13
2. Introduction to DAPL..15

Architectural Basics ..16
Data Processing Configuration ..18

System Commands ...18
Element Definition Commands..18
Input Configuration Commands...19
Output Configuration Commands ..19
Processing Configuration Commands ..20

General Rules for Command Syntax..21
Case ...21
Names ..21
Uniqueness ...21
Abbreviations ...21
Blanks ..21
Comments ..21
Continuation...21
Line Termination ..22
Numbers...22
Channel Pipe Notations...22
Task Parameter Notations..23
Range Notations ...23

About Efficiency...24
Direct Interaction with the Interpreter ..24
About Custom Processing Commands ...25

3. System Commands ...26
4. System Element Definition Commands..27
5. Input and Output Configuration Commands ..28

Input Configuration Commands...29
Output Configuration Commands ..30

6. Task Definition Commands..31
Task Definition Command Summary...32
Functional Categories of Tasks..34

Data Selection...34
Data Reduction and Statistics ..34
Data Management...34
Waveform Generation...35
Event Processing...35
Digital Signal Processing ..36
Signal Conversion and Filtering...36
Monitoring and Process Control ..36

7. Task Definition Using DAPL Expressions..39
Expression Syntax...39

Target...39
Expression..39

4 Contents

Expression Operands...39
Expression Data Types..40
Expression Operators ..40
Operator Precedence ...43
Buffering During Expression Evaluation..44
Data Extraction...44
Other Notes on Expressions...45
DAPL Expression Application Examples...46

8. Voltages and Number Representations ..49
Analog Input Voltages ..49
Digital Input Voltages ...49
Conversion Values..50
Binary Representation of Numbers ..51
Hexadecimal Representation of Numbers...51
Interpreting Conversion Values as Binary Fractions ...53
Number Representations Used by DAPL ...54
Conversions Between Data Types..55
Converting to Engineering Units..55

9. Sampling and Updating..57
Configuration Commands ...57
Input Sampling Configurations..58
Output Updating Configurations..60
Reader and Writer Constraints...61
Starting and Stopping..63

Starting under hardware control...64
Stopping under clock control ...64
Involuntary stopping: Underflow and Overflow ...64
Premature underflow and OUTPUTWAIT ...65
Burst mode ...66

Using Software Triggering ..67
Internal and External Clocking ..68

Channel List Clocking...68
External clock...68
A combination ..69

Pipelining and Burst Mode..70
Fast sampling..70

Buffering and Latency...71
Hardware buffering...71
Pipe system buffering..71
Tasking effects..72

10. Data Transfer ...75
Standard Com Pipes..76
Sending Text to the PC..76
Sending Binary Data to the PC ..77
Reading Text from the PC...78
Reading Binary Data from the PC..78
Additional Com Pipes ...78

11. Resource Allocation..79
Processing Time Allocation...79
Output Channel Access ...79
Memory Allocation...80

12. Optimizing Processor Performance ...81
Reducing Processor Load ..81
Digital Signal Processing ..81

Contents 5

Communication Formats ...81
Channel Pipe Efficiency..82
Streaming Data to the PC ..83
Trigger Performance ...83
High-Speed Triggering..84
Benchmarking an Application ...84

13. Prioritized Multitasking...85
Priority Levels in DAPL..85
DAPL Tasking States..86
Priority Scheduling ...87

The Round Robin Strategy ..87
Scheduling Rules ..87
Priority Inversions and Their Resolution..87

Configuring Priorities..89
Prioritized Processing Application...90

First Solution..90
Second Solution..91
Comparing the Two Configurations...92

Rescuer Scheduling...93
Using Priorities Effectively ...94

14. Overflow and Underflow..97
Overflow Messages...98
Preventing Overflow...99
Underflow Messages...100
Preventing Underflow ...101

15. Low Latency Operation..103
Buffering Control..104
Task Timing Control...105
Evaluating Task Latency...106
Low Latency Option ...106
Using Custom Modules to Reduce Latency..107

16. DAPL Software Triggering ..109
Defining Software Triggers ...110
Applying Software Triggers ..112
How Software Triggering Works...112
Equalizing Data Rates ...114
Starting and Stopping Triggers ..116
Triggering Modes ...117
Applying Trigger Operating Modes ...119

Oscilloscope Emulation Application..119
Process Monitoring Application ..119
Event Counting Application ..119
Destructive Tests and One-Shot Events..120

Timestamp-Modifying Commands ..121
Triggers and Independent ON/OFF Events...122
Triggering with Multiple Data Acquisition Processors..124
Asynchronous Events and PCASSERT..126

17. Digital Filtering ..129
Average and Running Average ..129
Finite Impulse Response Filters...130
Generating Filter Coefficients..130
Window Vectors ...130
Phase Response and Time Delay ...131

6 Contents

18. Fourier Transforms..133
DFT Command...134
FFT Command..134
Choosing Data Types ..135
FFT Modes...136
Windowing...137
Scaling In FFT Modes...137
Representing Sampled Data...139
Nyquist Frequency..140
Aliasing..140
The General Complex FFT..141
Representing Sampled Data with Cosines and Sines...141
Interpreting the FFT for Real Data...142
Errors in the FFT ..143

Section II. Reference ..145
19. DAPL Commands ..147

EXAMPLE...148
ABS ...149
ALARM ...150
AVERAGE...152
BAVERAGE ..153
BMERGE...154
BMERGEF...155
BOUND ...157
BUFFERS ..158
CALIBRATE..159
CANGLE ...160
CHANNELS (input sampling)..161
CHANNELS (output updating)...163
CHIRP..164
CLCLOCKING ..166
CLOCK (input sampling) ...167
CLOCK (output updating)..168
CMAG ...169
COMPRESS...170
CONSTANTS ..172
COPY...174
COPYVEC...175
CORRELATE ..176
COSINEWAVE..178
COUNT (for input sampling)..180
COUNT (for output updating) ..181
CROSSPOWER..182
CTCOUNT...184
CTRATE ..185
CYCLE ..186
DACOUT ...187
DECIBEL...191
DELTA ..193
DEXPAND...194
DFT ...196
DIGITALOUT..199
DISPLAY...203
DLIMIT ...208
EDIT ..210

Contents 7

EMPTY..212
END...213
ERASE...214
FFT ..215
FFT Modes without Data Post-Processing..217
FFT Modes with Data Post-Processing ..218
FILL...222
FINDMAX ...223
FIRFILTER ..225
FIRLOWPASS ...229
FORMAT...232
FREQUENCY..236
GROUPS..237
GROUPSIZE ..238
HELLO ..239
HIGH ...240
HTRIGGER (for input sampling)..241
HTRIGGER (for output updating) ..242
IDEFINE ..243
INTERP ...245
LET..247
LIMIT ..249
LOADING ...251
LOGIC ...253
LOW ..255
MASTER ...257
MERGE ...258
MERGEF ...260
NMERGE...261
NTH...262
ODEFINE...263
OPTIONS...264
OUTPORT ...269
OUTPUTWAIT ..271
PAUSE...272
PCASSERT ..273
PCOUNT..275
PDEFINE ...276
PID...277
PIDLATCH ..281
PIDRAMP..283
PIDSCRAM ...285
PIPES...287
POLAR ..289
PRIORITY ...291
PULSECOUNT ..292
PVALUE..293
PWM..294
QDCOUNT ..296
QDECODE...298
RANDOM..300
RANGE..301
RAVERAGE ..302
REPLICATE ..303
RESET ...304

8 Contents

RMS...306
RSUM..307
SAMPLE..309
SAMPLEHOLD ...311
SAWTOOTH..312
SDISPLAY...314
SEPARATE..315
SEPARATEF..316
SET (individual channel sampling) ...317
SET (multiple channel simultaneous sampling) ...320
SET (single channel output updating) ...323
SINEWAVE ...325
SKIP ..327
SLAVE ..328
SQRT...329
SQUAREWAVE ..330
START...332
STATISTICS..334
STATUS ..336
STDDEV..337
STOP ...338
STRING ...339
TAND ..340
TCOLLATE ...341
TFUNCTION1 ...343
TFUNCTION2 ...345
TGEN...347
THERMO...348
TIME ...351
TOGGLE..354
TOGGWT ..356
TOR...360
TRIANGLE..361
TRIGARM ...363
TRIGGERS ..364
TRIGRECV..367
TRIGSCALE ..368
TRIGSEND ..371
TSTAMP..373
UPDATE..374
VARIABLES..376
VARIANCE ...378
VECTOR..379
VRANGE ...381
WAIT...382

20. Previous Versions of DAPL..385
System Commands Now Obsolete...386
Processing Commands Now Obsolete..386
Processing Commands Now Retired ..386
Channel List Lengths ..388
Hardware Pin Notations ..388
Name Conflicts...388
Latency Control Options ...388
Variables in Parameter Lists..388
Supporting Older Software..388

Contents 9

21. Glossary..389
Index ..395

Section I. Overview 11

Section I. Overview

Chapter 2 Introduction 13

1. Introduction

A Data Acquisition Processor (DAP) from Microstar Laboratories is a self-contained data acquisition system
configured and operated by a host PC. The xDAP family includes semi-autonomous DAP products that connect to
the PC through an external connection, like a USB port. Other Data Acquisition Processor models mount in
peripheral bus slots in the host PC. Both kinds of DAP products are suitable for a wide range of applications in
laboratory and industrial data acquisition and control.

Four other manuals complement this DAPL Manual:
• The Data Acquisition Processor Installation Guide contains installation instructions.
• A Data Acquisition Hardware manual describes physical connections and hardware-configurable options.
• The DAPstudio Manual describes using the DAPL Development Studio software to develop and test application

configurations.
• The Applications Manual shows how to apply DAPL onboard processing for a wide variety of data acquisition

applications.

Scope of This Manual

This edition of the DAPL Manual contains information for version 1.00 and above of DAPL 3000. Many functions
are consistent with DAPL 2000 and earlier versions of the DAPL operating system, but there are some fundamental
differences:

• DAPL 3000 has better support for high channel count and high data rate applications.
• DAPL 3000 supports multi-priority processing, offering new possibilities for real-time applications.
• Extended precision data types are widely supported. If a computation with floating point data is meaningful, it is

almost always supported.
• Several new processing commands are added. Old commands are improved.
• The chapter on Previous Versions of DAPL discusses older command forms that are superseded in current

versions of the DAPL 3000 system.

Chapter 2 Introduction to DAPL 15

2. Introduction to DAPL

A Data Acquisition Processor is capable of simultaneously running sophisticated real-time data capture, data
processing, and signal generation tasks, under control of the DAPL operating system. The DAPL system supports a
broad range of hardware, timing, and processing configurations, and provides a library of built-in processing
functions for data selection, conversion and on-line analysis tasks.

This versatility is made accessible through a very powerful, high-level scripting language. The configuration
commands are typically organized as text files and downloaded to the DAPL system, as needed, by a software
application. Utility software such as DAP Measurement Studio (DAPstudio) can assist with preparing and running
the configurations. A single command line in the DAPL configuration script is the equivalent of hundreds of lines in
most programming or scripting languages.

16 Chapter 2 Introduction to DAPL

Architectural Basics

The DAPL operating system is downloaded into Random Access Memory (RAM) of the Data Acquisition Processor
during the boot sequence of the host processor. A configuration describing the input sampling, the output signal
generation, and the data processing is then downloaded by application software. That configuration is translated
automatically into a set of tasks. When the application tells the DAPL system to run the configuration, a
multitasking scheduler coordinates acquisition, signal generation, and communication events. Streams of data are
routed to processing tasks. The results of the processing are usually transferred back to the host software — but not
always. Sometimes the Data Acquisition Processor is configured to directly control various output signals
independent of the host software system.

DAPL tasks communicate through buffering structures called pipes. Tasks place data in pipes and remove data from
pipes. A pipe holds data temporarily until the next task in the processing sequence is ready for that data. DAPL
keeps the data in correct sequence by enforcing a first-in, first-out discipline. Data in pipes are considered available
for all tasks to read, but only those tasks that specify the pipe as a data source are allowed access. Each task that asks
to read data from a pipe will see all of the data from that pipe as if it were reading its own private copy.

During processing, data samples are recorded, output signal data are consumed, and intermediate computed values
are used and discarded. All of these activities require intermediate memory buffers. The DAPL system takes care of
all task synchronization and all memory buffer management. For example, if a task is temporarily unable to continue
because it has read all of its input data or because no space is available in its output pipe, the DAPL system will
suspend that task temporarily, scheduling other tasks to consume or provide data. Depending on the demands of the
processing, the amount of buffering memory in each pipe expands and shrinks dynamically.

The Data Acquisition Processor organizes the physical channels into configurable groups, known as channel lists.
The characteristics of each channel in the channel list are also configurable: signal source, gain, etc. Data captured
from the various channels are moved as efficiently as possible into memory and grouped according to the channel
list. This mixed organization is rather awkward for processing the data, so the DAPL system provides a mechanism
called “input channel pipes” for accessing the data in a more orderly fashion. The “input channel pipes” are treated
like any other data pipes for accessing data channels individually or in groups. In a similar fashion, “output channel
pipes” provide an orderly mechanism for collecting data for clocked output signal updates.

For processing data, DAPL system enforces scheduling rules that grant priority to tasks with critical real-time
actions, while otherwise enforcing “scheduling fairness” so that every process that needs to perform a processing
action gets an opportunity to do so. If any task exceeds its allowed time allocation or cannot proceed for any other
reason, the DAPL system goes on to schedule the next task.

Most input and output activity is driven by a stable digital clock, at configurable time intervals. Some input and
output actions, however, must be done “as soon as possible” and cannot wait for the usual buffering and timing
mechanisms. For these special cases, it is possible to transfer directly to the appropriate hardware port
“asynchronously,” bypassing the usual timing intervals.

A unique mechanism for inter-task coordination called “software triggers” is also provided. Software triggers are
really a kind of pipe, but instead of passing ordinary data, they pass information about where to locate data of
special interest. Sometimes this information is called “trigger events.” These are not really time-events in the
ordinary sense; rather, they are indications of where to find data. For example, suppose that a block of 100 data
samples is to be retained every time the block contains an odd number of positive values greater than 10000 but no
negative values. A task responding to these “trigger events” would know exactly which data to retain. The data to be
collected sometimes correspond to a moment in real-time prior to the triggering event, which seems implausible.

Chapter 2 Introduction to DAPL 17

How can the system respond to an event before it happens? This “pre-trigger sampling,” as it is often called, is really
an illusion. It doesn’t have anything to do with sampling. It is really intelligent data management.

18 Chapter 2 Introduction to DAPL

Data Processing Configuration

The configuration script for a DAPL application is very different from a programming language in the usual sense.
Most scripting languages are essentially procedural. That is, they specify “do this, then if this condition is satisfied,
do this…” and so forth. Even object-oriented languages operate this way, though their procedures are bound to data
objects: “If this object receives this message, do this, and if this condition is satisfied issue this message to that
object…” In contrast, a DAPL command specifies configuration rather than immediate action. It is sometimes useful
to say that only one command, the STARTSTARTSTARTSTART command, actually executes. The rest of the commands just specify what
to start. (This is not strictly true. Still, it is a useful concept.)

In fact, all commands execute, but in most cases the effect is to configure some aspect of the system, not to
immediately perform an application process.

The commands can be assigned to the following categories.

System Commands

These commands configure the system environment, provide operating status information, and start or stop
application configurations established by the other commands.

A task called the “command interpreter” is always available and active. It is responsible for receiving the text of all
commands and providing the appropriate response. The command text is usually received through the built-in
$SysIn text channel, but commands can also arrive from other sources. When it receives a system command, the
command interpreter executes this command immediately. Some commands, such as STARTSTARTSTARTSTART or STOPSTOPSTOPSTOP, control the
execution of an application configuration. Commands such as DISPLAYDISPLAYDISPLAYDISPLAY report current status information.
Commands such as PAUSEPAUSEPAUSEPAUSE affect the operation of the interpreter task, for example, to allow time for processes to
complete. Commands such as OPTIONSOPTIONSOPTIONSOPTIONS affect the system operating environment. Commands such as RESETRESETRESETRESET clear
the operating environment for beginning a new application configuration.

For example, the following sequence of commands will collect data using sampling procedure A for three seconds,
but allow three additional seconds to complete the data analysis with a user-defined processing procedure ANALYZE.

START A, ANALYZE
PAUSE 3000
STOP A
PAUSE 3000
RESET

Element Definition Commands

These commands define shared data elements used by processing tasks.

The element definition commands can be considered a special set of system commands, whose effect is to define a
named data element. Because these named elements are known to the system, processing tasks can use them to share
data access. Pipes establish connections between tasks and are always shared elements, so it is always necessary to
declare pipes before defining the processing tasks that use them. A shared data element persists in memory, and will
remain defined until removed by a system command such as ERASEERASEERASEERASE or RESETRESETRESETRESET.

Chapter 2 Introduction to DAPL 19

For example, the following commands define a variable called LAST_EVENT and a software trigger called T_EVENT.

VARIABLE LAST_EVENT
TRIGGER T_EVENT MODE=NORMAL HOLDOFF=128

CONSTANT elements in a DAPL configuration maintain a fixed value while the configuration is running. VARIABLE
elements are “active” and any tasks that access variables can change the values at any time. Furthermore, the value
of a variable can carry over from one run to the next, unless the variable is erased or explicitly assigned a new initial
value.

STRING elements can provide a means of encoding complex information, such as operating modes and options, not
easily delivered in the form of number values and data streams. Custom-developed processing commands can use a
string to identify a physical process, for example “Condenser 2 Pressure Valve,” and this text can then be used in
control and status messages to identify the affected system element.

Input Configuration Commands

These commands configure input channel lists, physical input channels, timing, and sample collection sequences.

Input configuration commands occur in a group that begins with an IDEFINEIDEFINEIDEFINEIDEFINE command and ends with an ENDENDENDEND
command. Special commands appear inside of the input configuration, such as the SETSETSETSET command for assigning input
channel pipes to input pins, and the TIMETIMETIMETIME command for establishing sampling intervals.

For example, the following input procedure configures input sampling to capture a sample every 10 microseconds,
taking samples alternately from the digital port and single-ended analog channel 1 with gain of 10.

IDEFINE ALT
 CHANNELS 2
 SET IP0 B
 SET IP1 S1 10
 TIME 10
END

Output Configuration Commands

These commands configure output channel lists, output converters, timing, and clocked signal update sequences.

The isochronous (clocked) output configuration commands occur in a group that begins with an ODEFINEODEFINEODEFINEODEFINE command
and ends with an ENDENDENDEND command. Special commands appear inside of the output configuration, such as the SETSETSETSET
command for assigning a data channel to an output device, and the TIMETIMETIMETIME command for establishing update timer
intervals.

For example, the following configuration generates a periodic signal of length 250 samples at analog output
converter 0, clocking a new update every 400 microseconds.

20 Chapter 2 Introduction to DAPL

ODEFINE SIGNAL
 CHANNELS 1
 SET OP0 A0
 TIME 400
 CYCLE 250
END

Processing Configuration Commands

These commands configure a network of processing tasks that consume, process, modify and transfer data in various
ways. A processing configuration can be considered a simple list without an enforced order of execution. Pipes serve
as the “wiring” — or “plumbing” if you like — for routing the outputs of a task to the inputs of subsequent tasks. If
data are available to process, a task can execute. Otherwise, some other task will run. This kind of configuration is
known as a “dataflow model.”

A task definition uses a processing command, but isn’t one. This distinction is important, and explains why a
command like SKIPSKIPSKIPSKIP or LIMITLIMITLIMITLIMIT can be used any number of times. If you like, you can think of each task as a separate
thread of execution through a body of shared command code, each thread of execution using its own set of data
sources and destinations. Or, you can think of each task as being an “independent copy” of the command with a
unique collection of associated data elements.

Most task definition commands in the processing procedure consist of:

1. A command name.
2. Keyword options. Only a few commands use these.
3. A parameter list. The parameter list specifies various explicit or shared data elements, such as the pipes serving as
data sources or destinations.

For example, the AVE processing configuration, below, alternately processes and discards data blocks of length 100
elements, and computes the average value for each retained block. Pipe PSKIP is used to transfer the intermediate
data between tasks. Assume that pipes PDATA, PSKIP and PAVE have been defined previously.

PDEFINE AVE
 SKIP(PDATA, 0,100,100, PSKIP)
 AVERAGE(PSKIP,100,PAVE)
END

There is a second kind of task definition called a DAPL expression that looks very different. The DAPL expression
in the following example takes each value from pipe P1 and rounds it to the next smaller multiple of 10, placing the
results into pipe P2.

P2 = (P1/10) * 10

While this looks very much like an assignment statement in an ordinary programming language, there is a big
difference. An assignment statement operates on one value. A DAPL expression converts one or more streams of
data to another stream. For more information about DAPL expressions, see Chapter 7.

Task definitions must refer to command names that are known to the system, hence, these must either be processing
commands built into the system or custom-programmed commands that previously have been downloaded into the
Data Acquisition Processor memory.

Chapter 2 Introduction to DAPL 21

The tasks defined in a processing procedure remain available, though inactive, until the system command STARTSTARTSTARTSTART
activates the procedure.

General Rules for Command Syntax

Case

Command names can be given in upper case or lower case letters. For example, the names “skip” and “SKIP” are
treated the same within the DAPL system.

Names

Names assigned to shared elements must begin with an alphabetic character and may contain of additional
alphabetic, numeric, or underscore characters. Some pre-defined system names can begin with a “$” character, for
example, the $BinOut pipe.

Uniqueness

Names assigned to shared data elements must be distinctive from all built-in command names, pre-defined symbols,
reserved command keywords, and other user-assigned names.

Abbreviations

Some system command names can be abbreviated. This is not generally recommended in configuration files, but is
sometimes useful for direct interaction with the command interpreter. See the listings for the individual commands
for information about the accepted abbreviations.

Blanks

Blank characters serve as separators, but have no meaning except within string constants. With rare exceptions,
blanks can appear anyplace where other separator or termination characters appear, for example, the expressions
“A=B” and “A = B” have equivalent meanings. However, the commands “AB = C” and “A B = C” are not
equivalent, because the intervening blank separates characters A and B into two distinct names.

Comments

DAPL supports “trailing comments” that begin with a “//” character pair outside of a string constant. Comments
continue to the end of the current line. Continued lines cannot be commented. Comments have the same
interpretation as blanks, that is, they act as a separator but otherwise have no meaning.

Continuation

A very long command line can be temporarily terminated with a backslash “\” character at the end of the line, with
the command continued on the next line. The effect is the same as if the command were on a single very long line.
String constants cannot be continued this way, however. Continued lines cannot have trailing comments.

22 Chapter 2 Introduction to DAPL

NOTE: Some commands provide alternative notations for line continuations. See for example the VECTORVECTORVECTORVECTOR
command.

Line Termination

A text line can be terminated by a combination of a carriage-return character followed immediately by a linefeed
character, or a combination of a linefeed character followed immediately by a carriage-return character. Otherwise,
each carriage-return or linefeed character terminates a separate line. These conventions make DAPL configuration
scripts compatible with text conventions on most operating systems. Output texts such as messages are terminated
by a carriage return character followed by a linefeed character. Most operating systems can display this text without
difficulty, though some might show an extra blank line between actual text lines.

Numbers

Number constants can be entered in a decimal or hexadecimal notation. Hexadecimal constants are prefixed by a “$”
character without any intervening blanks. For example:

$ABCD

The hexadecimal notation is treated as a pattern of bits, and the value depends on the interpretation of the sign bit. If
the value above is placed into a 16-bit data pipe, the high-order bit is a 1 so the value is -21555. But if placed into a
32-bit long pipe, the high-order bit is not in the sign bit position, so the value is 43981.

For certain command notations, numbers must be specified in a decimal notation. For example:

TIME $1F : invalid!

Channel Pipe Notations

Input and output channel pipes are accessed using input channel pipe and output channel pipe notations,
respectively.

An input channel pipe notation has two parts, an IPIPE notation and a channel specifier, with an optional separating
blank. The IPIPE keyword can be abbreviated to IP. An output channel pipe notation is similar, except for the
OPIPE or OP keyword.

The channel specifier part has two forms, a single channel specifier or a channel pipe list.

The following example shows an input channel pipe notation with a single channel specifier. This form is used in an
input procedure or output procedure for assigning a signal pin to a channel pipe.

SET IPIPE0 S9 // input procedure
SET OP 0 A0 // output procedure

A similar notation can be used in a task definition parameter list to access the channel pipes. For example:

COPY(IP 0, $BinOut)
SINEWAVE(5000,200,OP0)

Chapter 2 Introduction to DAPL 23

The channel pipe list notation specifies sets of samples to be collected. Channels can be listed individually, or ranges
of numbers can be specified using a “dot-dot” notation. Channels do not have to be in a strictly ascending order, but
it is most efficient to arrange them that way so that the DAPL system does not need to shuffle the data for transfers
with input or output processing. Channel specifications are separated by commas, and the list enclosed in
parentheses. For example, the following command will transfer the data from the first four input channel pipes
directly to the first four output channel pipes.

COPY(IP (0,1,2,3), OP (0..3))

Usually, a shared constant or vector value is also accepted as a channel or channel list specification. For example, if
constant CCHAN is defined

CONSTANT CCHAN = 1

then the following would be an acceptable input channel specification:

IPIPE CCHAN

The blank separator is required in this example; otherwise the characters “IPIPECCHAN” would be interpreted as a
shared element name rather than an input channel pipe.

Task Parameter Notations

Most task definitions require specification of a number of configuration parameters. Tasks that require no
parameters can omit the parameter list. The list consists of a number of parameter items, separated by commas, and
enclosed in parentheses. The elements in the list can be:

1. Explicit constant values
2. Named constant values
3. Named variable values
4. Explicit vectors, enclosed in parentheses, with the vector terms separated by commas
5. Named vectors
6. Explicit strings
7. Named string values
8. Pipe names
9. Input or output channel pipe notations
10. Software trigger pipe names
11. Range notations (see the discussion below)

The FORMATFORMATFORMATFORMAT command allows some additional formatting notations. See the FORMATFORMATFORMATFORMAT command reference pages for
full information.

Range Notations

A region notation is a conventional combination of task definition parameters. It consists of three parameters: a
special reserved name INSIDE or OUTSIDE, a 16-bit numeric parameter specifying a lower range limit, and a 16-bit
numeric parameter specifying an upper range limit. The terms are separated by commas. If the range limits are
variable names, these limits can be adjusted dynamically while the task is running.

24 Chapter 2 Introduction to DAPL

The range values usually represent data values, but sometimes they constrain an index. The INSIDE condition is
satisfied if the value under test, data or index, is greater than or equal to the lower limit, and also less than or equal
to the upper limit. The OUTSIDE condition is satisfied if the value under test is strictly less than the lower limit or
strictly greater than the upper limit.

In the following example, a LIMITLIMITLIMITLIMIT command uses a range specification to test for data falling outside of the range -
32768 to 0 (that is, any strictly positive number).

LIMIT(P1, OUTSIDE, -32768, 0, T1)

In the following example, the range specification instructs the FINDMAXFINDMAXFINDMAXFINDMAX command to examine only the first 128
values from blocks of data containing 256 samples.

FINDMAX(P1, 256, INSIDE,0,127, P2)

About Efficiency

A processing configuration might use perhaps two dozen commands to invoke very powerful processing options.
This processing is specified using a very high-level DAPL configuration script. But very high level languages tend
to achieve their power at a cost of speed and efficiency. When the application runs, what is the speed penalty,
compared to (say) a hand coded application?

The answer is: No penalty. How is this possible?

Recall, the high level commands for configuring an application do not execute directly, rather, they configure
system elements. This configuration is typically expressed in terms of interrelated data structures, not executable
code. The code that actually runs, in all of the data sampling, updating and processing tasks, is highly optimized.
Execution of the configuration script is slow (by comparison), but this does not apply to the run-time processing.

Direct Interaction with the Interpreter

Most of the time, DAPL configuration files are downloaded through the $SysIn command pipe under software
control, using the software facilities of the DAPIO32.DLL programming interface. Utility programs like DAPstudio,
or applications that you write, all use this approach. But it is also possible to transfer configuration information
manually and directly to the DAPL interpreter interactively. For this kind of manual operation, typically the
interpreter is put into the SYSINECHO mode using the OPTIONSOPTIONSOPTIONSOPTIONS command. Any input text is echoed back to the
sender through the $SysOut text pipe in the manner of a data terminal operating in half-duplex mode. The
interpreter will also send prompt characters to indicate when it is expecting the next command. Normally the prompt
character is the “#” character. After sending an IDEFINEIDEFINEIDEFINEIDEFINE, ODEFINEODEFINEODEFINEODEFINE or PDEFINEPDEFINEPDEFINEPDEFINE command, the prompt character is
changed to “>” indicating that the interpreter is awaiting the commands that make up the body of the input, output or
processing definition respectively. After the terminating ENDENDENDEND command, the “#” prompt returns.

Chapter 2 Introduction to DAPL 25

About Custom Processing Commands

While the capabilities of the built-in processing commands are extensive, it is not possible for any given set of
commands to meet every possible processing requirement. The DAPL system allows developing and downloading
command modules specifically suited to special data acquisition applications. Once downloaded into the Data
Acquisition Processor memory, commands in a module have the same status as a built-in task definition command.
The most common reasons for employing custom command modules are:

1. Specialization and Extension.

A custom command can provide processing features that are not available using pre-defined commands. For
example, there are hundreds of specialized digital signal processing algorithms besides the basic filtering and
transform operations provided by the operating system. Specialized operations can be downloaded to act in
combination with, or as replacements for, the built-in commands.

2. Combination for Efficiency.

Some applications require sequences of processing operations. When applied to very long input channel lists,
this can mean hundreds of processing tasks, transferring data through hundreds of data pipes. The operating
overhead of any one pipe or task is small, but multiply this by several hundred and this can lead to inefficiencies
that compromise processing capacity. A custom command can perform the equivalent of many pre-defined
processing operations in parallel, improving processing efficiency.

3. Combination for Speed.

A custom command task can substitute for very complicated DAPL expressions. Some complex computations
can be computed more quickly if compiled to native machine code and optimized by a compiler.

4. Real-time Response.

When it is important to respond to time-critical events, having a large number of tasks can be a hazard. Any
tasks that execute between the time that an event is detected but before the response can be sent introduce a
delay, also known as “latency.” If the delay is unacceptable, processing can often be packaged into a limited
number of tasks, sometimes as few as one, so that the latency is more tightly bounded.

Custom command modules are written in the C++ programming language, compiled into a binary code image, and
downloaded to a Data Acquisition Processor using a utilities such as CDLOAD32, an application generator such as
DAPstudio, or manually using the Accel Console Command Application. Tools for preparing the command code, all
required utilities, and lots of working examples are provided by the Microstar Laboratories Developer’s Toolkit for
DAPL.

26 Chapter 3 System Commands

3. System Commands

DAPL system commands start and stop sampling, set system options, request status information and set initial
conditions. They are executed immediately when received by the DAPL command interpreter.

The following system commands are built into the DAPL operating system:

DISPLAYDISPLAYDISPLAYDISPLAY display symbol and system status information
EDITEDITEDITEDIT modify input and output procedures and com pipes
EMPEMPEMPEMPTYTYTYTY empty all data from a pipe
ERASEERASEERASEERASE remove a symbol
FILLFILLFILLFILL add data values to a pipe
HELLOHELLOHELLOHELLO return a line including the DAPL version number
LETLETLETLET change the value of a variable or constant
OPTIONSOPTIONSOPTIONSOPTIONS change a system option
OUTPORTOUTPORTOUTPORTOUTPORT define output expansion board types
PAUSEPAUSEPAUSEPAUSE pause DAPL interpreter
RESETRESETRESETRESET reset DAPL interpreter
SAMPLEHOLDSAMPLEHOLDSAMPLEHOLDSAMPLEHOLD wait for input processing to stop
SDISPLAYSDISPLAYSDISPLAYSDISPLAY display information about symbols
STARTSTARTSTARTSTART start input, output, and processing procedures
STATISTICSSTATISTICSSTATISTICSSTATISTICS display task statistics
STATUSSTATUSSTATUSSTATUS display system status
STOPSTOPSTOPSTOP stop input, output, and processing procedures

Chapter 4 System Element Definition Commands 27

4. System Element Definition Commands

A defining command is a special kind of system command. It executes immediately, but its effect is to construct a
persistent, shared system element with an assigned name. Execution of the command will:

• allocate memory for the element
• assign and record its name
• initialize the memory with appropriate values

The element is inactive until a configuration that uses it is started. A defined element will remain defined until
removed by an ERASEERASEERASEERASE command or a system initialization command such as RRRRESETESETESETESET.

Some elements reserve data storage memory when the element is defined. Other elements will allocate data memory
dynamically when the processing configuration runs. For example, the data storage areas for pipes will grow and
shrink as data are accumulated or extracted.

The following system element definition commands are built into the DAPL operating system:

CONSTANTSCONSTANTSCONSTANTSCONSTANTS define constants
PIPESPIPESPIPESPIPES define pipes
STRINGSTRINGSTRINGSTRING define a string
TRIGGERSTRIGGERSTRIGGERSTRIGGERS define triggers
VARIABLESVARIABLESVARIABLESVARIABLES define variables
VECTORVECTORVECTORVECTOR define a vector.

Once an element is defined, it can be used in DAPL processing configurations. For example, a variable VALUE and a
pipe PSTREAM can be combined by a DAPL expression PSTREAM + VALUE.

28 Chapter 9 Input and Output Configuration Commands

5. Input and Output Configuration Commands

Input configuration commands establish an operating configuration for input sampling hardware. Output
configurations establish an operating configuration for output updating hardware. Other than this major difference,
input and output configurations are similar in many ways. Both are closely related to the hardware features of the
Data Acquisition Processor, so the supported options may vary with the Data Acquisition Processor model. Both are
optional. More than one input and output procedure can be defined, but at most one of each can run at any one time.
Both associate physical pins to logical data channels called channel pipes. Both use sets of configuration commands
to select buffering, clocking, hardware triggering, and time interval options.

The commands that make up an input or output procedure definition are the equivalent of a single system element
defining command, in the sense that together they define a data structure, though it is a complex one.

Some Data Acquisition Processor models are specialized for high speed data capture only, and do not support output
updating configurations.

Chapter 9 Input and Output Configuration Commands 29

Input Configuration Commands

An input configuration begins with an IDEFINEIDEFINEIDEFINEIDEFINE statement, ends with an ENDENDENDEND statement, and contains a number of
commands that configure input sampling options.

IDEFINEIDEFINEIDEFINEIDEFINE begin an input configuration definition
ENDENDENDEND complete an input configuration definition

BUFFERSBUFFERSBUFFERSBUFFERS specify the input buffer mode
CHANNELSCHANNELSCHANNELSCHANNELS configure the number of channels to receive data
CLCLOCKINGCLCLOCKINGCLCLOCKINGCLCLOCKING select the channel list clocking mode
CLOCKCLOCKCLOCKCLOCK select internal or external clocking
COUNTCOUNTCOUNTCOUNT specify the number of samples to acquire
GROUPSGROUPSGROUPSGROUPS configure the number of channel groups to receive data
GROUPSIZEGROUPSIZEGROUPSIZEGROUPSIZE define the number of channels in a programmable input channel group
HTRIGGERHTRIGGERHTRIGGERHTRIGGER select the hardware triggering mode
SAMPLESAMPLESAMPLESAMPLE select continuous or burst input operations
SETSETSETSET associate a channel pipe with a physical pin or pin group
TIMETIMETIMETIME select the sampling interval
VRANGEVRANGEVRANGEVRANGE set configurable input voltage range limits

30 Chapter 9 Input and Output Configuration Commands

Output Configuration Commands

An output configuration begins with an ODEFINEODEFINEODEFINEODEFINE statement, ends with an ENDENDENDEND statement, and contains a number of
commands that configure output updating options. These commands are not applicable for models that do not
support output signal generation.

ODEFINEODEFINEODEFINEODEFINE begin an output configuration definition
ENDENDENDEND complete an output configuration definition

CHANNELSCHANNELSCHANNELSCHANNELS configure the number of channels delivering data
CLCLOCKINGCLCLOCKINGCLCLOCKINGCLCLOCKING select the channel list clocking mode
CLOCKCLOCKCLOCKCLOCK select internal or external clocking
COUNTCOUNTCOUNTCOUNT select the number of output updates
CYCLECYCLECYCLECYCLE specify the cycle length for periodic output data
HTRIGGERHTRIGGERHTRIGGERHTRIGGER select hardware triggering mode
OUTPUTWAITOUTPUTWAITOUTPUTWAITOUTPUTWAIT select the number of samples to buffer before updating begins
SETSETSETSET associate a channel pipe with a physical pin
TIMETIMETIMETIME select the output update interval
UPDATEUPDATEUPDATEUPDATE select continuous output operation or burst output operation

Chapter 6 Task Definition Commands 31

6. Task Definition Commands

A processing configuration is a group of commands that defines a sets of interrelated tasks to be executed together.
A processing procedure begins with a PDEFINEPDEFINEPDEFINEPDEFINE statement, ends with an ENDENDENDEND statement, and contains commands that
define the processing tasks. An execution priority for the group of tasks can also be assigned. Task definitions can
apply any of the built-in processing commands, or a command in a downloaded command module. A DAPL
expression can also define a processing task. A processing command can be used any number of times, assigning
different data sources and destinations for each task.

The tasks created in this manner become available for execution, but they do not run until their processing procedure
is activated by the STARTSTARTSTARTSTART system command. When the STARTSTARTSTARTSTART command selects the processing procedure containing
a task, the STARTSTARTSTARTSTART command will

• allocate stack space for the task,
• set up a data storage area for the task,
• assign a scheduling entry for the task.

Once running, a task locates the system elements specified by its parameter list and executes the body of command
code. This code is separate from the DAPL interpreter, and is optimized for efficient execution. A running task can
access data sources and data destinations, including: read data from data pipes, perform computations, write result
data to data pipes, access shared variable, vector, or string data, or report software trigger events.

32 Chapter 7 Task Definition Commands

Task Definition Command Summary

The following task-defining commands are provided with the DAPL operating system:

PDEFINEPDEFINEPDEFINEPDEFINE begin a processing configuration
ENDENDENDEND complete a processing configuration

PRIORITYPRIORITYPRIORITYPRIORITY establish the execution priority of tasks defined in a processing procedure

ABSABSABSABS compute absolute values
ALARMALARMALARMALARM generate digital alarm signals
AVERAGEAVERAGEAVERAGEAVERAGE average pipe data
BAVERAGEBAVERAGEBAVERAGEBAVERAGE perform block averaging
BMERGEBMERGEBMERGEBMERGE merge blocked data
BMBMBMBMERGEFERGEFERGEFERGEF merge blocked data with identifying flags
BOUNDBOUNDBOUNDBOUND saturate data stream range within adjustable limits
CANGLECANGLECANGLECANGLE compute polar angle (phase angle)
CHIRPCHIRPCHIRPCHIRP generate a swept frequency cosine waveform
CMAGCMAGCMAGCMAG compute polar magnitude (complex absolute value)
COMPRESSCOMPRESSCOMPRESSCOMPRESS compress data flow for inputs that change infrequently
COPYCOPYCOPYCOPY copy the data in a pipe into several other pipes
COPYVECCOPYVECCOPYVECCOPYVEC copy data from a vector to a pipe
CORRELATECORRELATECORRELATECORRELATE compute cross correlations
COSINEWAVECOSINEWAVECOSINEWAVECOSINEWAVE generate cosine waveforms
CROSSPOWERCROSSPOWERCROSSPOWERCROSSPOWER compute cross power spectrum
CTCOUNTCTCOUNTCTCOUNTCTCOUNT accumulate long word counts from counter timer board data
CTRATECTRATECTRATECTRATE compute frequencies from counter timer board data
DACOUTDACOUTDACOUTDACOUT send data to an analog output port
DECIBELDECIBELDECIBELDECIBEL convert positive values to decibels
DELTADELTADELTADELTA compute the differences of the values in a pipe
DEXPANDDEXPANDDEXPANDDEXPAND calculate data required for digital output port expansion
DFTDFTDFTDFT compute discrete Fourier transform terms directly
DIGITALOUTDIGITALOUTDIGITALOUTDIGITALOUT send data to a digital output port
DLIMITDLIMITDLIMITDLIMIT scan data for slopes that are out of range
FFTFFTFFTFFT compute fast Fourier transforms
FINDMAXFINDMAXFINDMAXFINDMAX find the locations of maxima in blocks of data
FIRFILTERFIRFILTERFIRFILTERFIRFILTER apply digital filtering and reduce data volume
FIRLOWPASSFIRLOWPASSFIRLOWPASSFIRLOWPASS apply predefined lowpass digital filtering
FORMATFORMATFORMATFORMAT format data as text and transfer to the PC
FREQUENCYFREQUENCYFREQUENCYFREQUENCY determine frequencies of trigger assertions
HIGHHIGHHIGHHIGH compute maxima of blocks of data
INTERPINTERPINTERPINTERP interpolate with a lookup table
LOADINGLOADINGLOADINGLOADING simulate CPU loading for data flow and latency studies
LIMITLIMITLIMITLIMIT scan data for values that are out of range
LOGICLOGICLOGICLOGIC scan binary data for bit transitions
LOWLOWLOWLOW compute minima of blocks of data
MERGEMERGEMERGEMERGE merge data from multiple pipes
MERGEFMERGEFMERGEFMERGEF merge data from multiple, adding identifying flags

Chapter 6 Task Definition Commands 33

NMERGENMERGENMERGENMERGE merge different size data blocks from multiple pipes
NTHNTHNTHNTH remove excess trigger events
PCASSERTPCASSERTPCASSERTPCASSERT generate triggers based on PC control
PCOUNTPCOUNTPCOUNTPCOUNT count the number of values placed in a pipe
PIDPIDPIDPID apply closed-loop regulation to a dynamic process
PIDLATCHPIDLATCHPIDLATCHPIDLATCH override for smoothly activating/deactivating PID control
PIDRAMPPIDRAMPPIDRAMPPIDRAMP smoothed transition shapes for control loop level changes
PIDSCRAMPIDSCRAMPIDSCRAMPIDSCRAM safe and smooth emergency shutdown control override
POLARPOLARPOLARPOLAR convert from complex rectangular to polar form
PULSECOUNTPULSECOUNTPULSECOUNTPULSECOUNT count the number of digital input pulses
PVALUEPVALUEPVALUEPVALUE determine the most recent value in a pipe
PWMPWMPWMPWM perform pulse width modulation
QDCOUNTQDCOUNTQDCOUNTQDCOUNT convert 16-bit quadrature decoder board counts into a running sum
QDECODEQDECODEQDECODEQDECODE directly count quadrature encoder pulses without a decoder board
RANDOMRANDOMRANDOMRANDOM generate pseudorandom numbers
RANGERANGERANGERANGE remove data values that are out of range
RAVERAGERAVERAGERAVERAGERAVERAGE compute running averages of pipe data
REPLICATEREPLICATEREPLICATEREPLICATE copy data, repeating each value a specified number of times
RMSRMSRMSRMS compute root mean square values
RSUMRSUMRSUMRSUM running sums and integration, with scaling and decimation
SAWTOOTHSAWTOOTHSAWTOOTHSAWTOOTH generate sawtooth waveforms
SEPARATESEPARATESEPARATESEPARATE separate merged data
SEPARATEFSEPARATEFSEPARATEFSEPARATEF separate flagged merged data
SINEWAVESINEWAVESINEWAVESINEWAVE generate sine waveforms
SKIPSKIPSKIPSKIP delete selected blocks of data
SQRTSQRTSQRTSQRT compute square roots
SQUAREWAVESQUAREWAVESQUAREWAVESQUAREWAVE generate square waveforms
STDDEVSTDDEVSTDDEVSTDDEV compute standard deviation values
TANDTANDTANDTAND combine triggers with logical ‘and’
TCOLLATETCOLLATETCOLLATETCOLLATE combine triggers producing a combined event stream
TFUNCTION1TFUNCTION1TFUNCTION1TFUNCTION1 calculate transfer characteristics using direct methods
TFUTFUTFUTFUNCTION2NCTION2NCTION2NCTION2 calculate transfer characteristics using power spectra
TGENTGENTGENTGEN generate periodic triggers
THERMOTHERMOTHERMOTHERMO perform thermocouple linearization on data
TOGGLETOGGLETOGGLETOGGLE test trigger events for alternating ON and OFF events
TOGGWTTOGGWTTOGGWTTOGGWT collect data between alternating ON and OFF events
TORTORTORTOR combine triggers with logical 'or'
TRIANGLETRIANGLETRIANGLETRIANGLE generate triangle waveforms
TRIGARMTRIGARMTRIGARMTRIGARM allow a task to arm or disarm software triggers
TRIGRECVTRIGRECVTRIGRECVTRIGRECV recover encoded software trigger information
TRIGSCALETRIGSCALETRIGSCALETRIGSCALE modify a stream of trigger events
TRIGSENDTRIGSENDTRIGSENDTRIGSEND transfer trigger information to another DAP
TSTAMPTSTAMPTSTAMPTSTAMP convert trigger assertions to time stamps
VARIANCEVARIANCEVARIANCEVARIANCE compute the statistical variance of pipe data
WAITWAITWAITWAIT wait for a trigger event and transfer trigger data to a pipe

34 Chapter 7 Task Definition Commands

Functional Categories of Tasks

The following lists identify tasks that are most likely to be useful for each given category of application
requirements.

Data Selection
Tasks useful for extracting data of special interest from data streams.

DLIMITDLIMITDLIMITDLIMIT scan data for slopes that are out of range
FINDMAXFINDMAXFINDMAXFINDMAX find the locations of maxima in blocks of data
LIMITLIMITLIMITLIMIT scan data for values that are out of range
LOGLOGLOGLOGICICICIC scan binary data for bit transitions
NTHNTHNTHNTH remove excess trigger events
RANGERANGERANGERANGE remove data values that are out of range
RANGERANGERANGERANGE remove data values that are out of range
SEPARATEFSEPARATEFSEPARATEFSEPARATEF separate flagged merged data
SKIPSKIPSKIPSKIP delete selected blocks of data
TANDTANDTANDTAND combine triggers with logical ‘and’
TOGGLETOGGLETOGGLETOGGLE test trigger events for alternating ON and OFF events
TOGGWTTOGGWTTOGGWTTOGGWT collect data between alternating ON and OFF events
WAITWAITWAITWAIT wait for a trigger event and transfer trigger data to a pipe

Data Reduction and Statistics
Tasks that reduce raw data to statistical information.

AVERAGEAVERAGEAVERAGEAVERAGE average pipe data
BAVERAGEBAVERAGEBAVERAGEBAVERAGE perform block averaging
COMPRESSCOMPRESSCOMPRESSCOMPRESS compress data flow for inputs that change infrequently
FINDMAXFINDMAXFINDMAXFINDMAX find the locations of maxima in blocks of data
FIRFILTERFIRFILTERFIRFILTERFIRFILTER apply digital filtering and reduce data volume
FIRLOWPASSFIRLOWPASSFIRLOWPASSFIRLOWPASS apply predefined lowpass digital filtering
HIGHHIGHHIGHHIGH compute maxima of blocks of data
LOWLOWLOWLOW compute minima of blocks of data
PCOUNTPCOUNTPCOUNTPCOUNT count the number of values placed in a pipe
PVALUEPVALUEPVALUEPVALUE determine the most recent value in a pipe
RANGERANGERANGERANGE remove data values that are out of range
RSUMRSUMRSUMRSUM running sums and integration, with scaling and decimation
RMSRMSRMSRMS compute root mean square values
SKIPSKIPSKIPSKIP delete selected blocks of data
STDDEVSTDDEVSTDDEVSTDDEV compute standard deviation values
VARIANCEVARIANCEVARIANCEVARIANCE compute the statistical variance of pipe data

Data Management

Tasks that move, replicate, combine, separate, remove data.

BMERGEBMERGEBMERGEBMERGE merge blocked data

Chapter 6 Task Definition Commands 35

BMERGEFBMERGEFBMERGEFBMERGEF merge blocked data with identifying flags
LOADINGLOADINGLOADINGLOADING simulate CPU loading for data flow and latency studies
MERGEMERGEMERGEMERGE merge data from multiple pipes
MERGEFMERGEFMERGEFMERGEF merge data from multiple, adding identifying flags
NMERGENMERGENMERGENMERGE merge different size data blocks from multiple pipes
COPYCOPYCOPYCOPY copy the data in a pipe into several other pipes
COMPRESSCOMPRESSCOMPRESSCOMPRESS compress data flow for inputs that change infrequently
COPYVECCOPYVECCOPYVECCOPYVEC copy data from a vector to a pipe
MERGEMERGEMERGEMERGE merge data from multiple pipes
MERGEFMERGEFMERGEFMERGEF merge data from multiple, adding identifying flags
REPLICATEREPLICATEREPLICATEREPLICATE copy data, repeating each value a specified number of times
SEPARATESEPARATESEPARATESEPARATE separate merged data
SEPARATEFSEPARATEFSEPARATEFSEPARATEF separate flagged merged data
SKIPSKIPSKIPSKIP delete selected blocks of data

Waveform Generation
Tasks useful for generating data sample sequences of real-time waveforms.

CHIRPCHIRPCHIRPCHIRP generate a swept frequency cosine waveform
COPYVECCOPYVECCOPYVECCOPYVEC copy data from a vector to a pipe
COSINEWAVECOSINEWAVECOSINEWAVECOSINEWAVE generate cosine waveforms
SINEWAVESINEWAVESINEWAVESINEWAVE generate sine waveforms
TRIANGLETRIANGLETRIANGLETRIANGLE generate triangle waveforms
SQUAREWAVESQUAREWAVESQUAREWAVESQUAREWAVE generate square waveforms
SAWTOOTHSAWTOOTHSAWTOOTHSAWTOOTH generate sawtooth waveforms
RANDOMRANDOMRANDOMRANDOM generate pseudorandom numbers
FIRFILTERFIRFILTERFIRFILTERFIRFILTER apply digital filtering and reduce data volume

Event Processing

Tasks that identify special event conditions and apply selected processing in response.

ALARMALARMALARMALARM generate digital alarm signals
DACOUTDACOUTDACOUTDACOUT send data to an analog output port
DIGITALOUTDIGITALOUTDIGITALOUTDIGITALOUT send data to a digital output port
DLIMITDLIMITDLIMITDLIMIT scan data for slopes that are out of range
LIMITLIMITLIMITLIMIT scan data for values that are out of range
FINDMAXFINDMAXFINDMAXFINDMAX find the locations of maxima in blocks of data
LOGICLOGICLOGICLOGIC scan binary data for bit transitions
NTHNTHNTHNTH remove excess trigger events
PCASSERTPCASSERTPCASSERTPCASSERT generate triggers based on PC control
TANDTANDTANDTAND combine triggers with logical ‘and’
TCOLLATETCOLLATETCOLLATETCOLLATE combine triggers producing a combined event stream
TGENTGENTGENTGEN generate periodic triggers
TOGGLETOGGLETOGGLETOGGLE test trigger events for alternating ON and OFF events
TOGGWTTOGGWTTOGGWTTOGGWT collect data between alternating ON and OFF events
TORTORTORTOR combine triggers with logical 'or'
TRIGARTRIGARTRIGARTRIGARMMMM allow a task to arm or disarm software triggers

36 Chapter 7 Task Definition Commands

TRIGSENDTRIGSENDTRIGSENDTRIGSEND transfer trigger information to another DAP
TRIGRECVTRIGRECVTRIGRECVTRIGRECV recover encoded software trigger information
TRIGSTRIGSTRIGSTRIGSCALECALECALECALE modify a stream of trigger events
TSTAMPTSTAMPTSTAMPTSTAMP convert trigger assertions to time stamps
WAITWAITWAITWAIT wait for a trigger event and transfer trigger data to a pipe

Digital Signal Processing

Tasks related to numerically-intensive DSP processing.

CMAGCMAGCMAGCMAG compute polar magnitude (complex absolute value)
CANGLECANGLECANGLECANGLE compute polar angle (phase angle)
CORRECORRECORRECORRELATELATELATELATE compute cross correlations
CROSSPOWERCROSSPOWERCROSSPOWERCROSSPOWER compute cross power spectrum
DECIBELDECIBELDECIBELDECIBEL convert positive values to decibels
FINDMAXFINDMAXFINDMAXFINDMAX find the locations of maxima in blocks of data
FIRFILTERFIRFILTERFIRFILTERFIRFILTER apply digital filtering and reduce data volume
FIRLOWPASSFIRLOWPASSFIRLOWPASSFIRLOWPASS apply predefined lowpass digital filtering
FFTFFTFFTFFT compute fast Fourier transforms
DFTDFTDFTDFT compute discrete Fourier transform terms directly
TFUNCTION1TFUNCTION1TFUNCTION1TFUNCTION1 calculate transfer characteristics using direct methods
TFUNCTION2TFUNCTION2TFUNCTION2TFUNCTION2 calculate transfer characteristics using power spectra

Signal Conversion and Filtering

Tasks that modify the contents of data streams.

ABSABSABSABS compute absolute values
BOUNDBOUNDBOUNDBOUND saturate data stream range within adjustable limits
CANGLECANGLECANGLECANGLE compute polar angle (phase angle)
CMAGCMAGCMAGCMAG compute polar magnitude (complex absolute value)
DELTADELTADELTADELTA compute the differences of the values in a pipe
FIRFILTERFIRFILTERFIRFILTERFIRFILTER apply digital filtering and reduce data volume
FREQUENCYFREQUENCYFREQUENCYFREQUENCY determine frequencies of trigger assertions
POLARPOLARPOLARPOLAR convert from complex rectangular to polar form
PULSECOUNTPULSECOUNTPULSECOUNTPULSECOUNT count the number of digital input pulses
PWMPWMPWMPWM perform pulse width modulation
QDCOUNTQDCOUNTQDCOUNTQDCOUNT convert 16-bit quadrature decoder board counts into a running sum
QDECODEQDECODEQDECODEQDECODE directly count quadrature encoder pulses without a decoder board
RAVERAGERAVERAGERAVERAGERAVERAGE compute running averages of pipe data
RSUMRSUMRSUMRSUM running sums and integration, with scaling and decimation
SKIPSKIPSKIPSKIP delete selected blocks of data
SQRTSQRTSQRTSQRT compute square roots
THERMOTHERMOTHERMOTHERMO perform thermocouple linearization on data
INTEINTEINTEINTERPRPRPRP interpolate with a lookup table

Monitoring and Process Control

Tasks for stimulus-response processing in real time.

Chapter 6 Task Definition Commands 37

ALARMALARMALARMALARM generate digital alarm signals
DACOUTDACOUTDACOUTDACOUT send data to an analog output port
DIGITALOUTDIGITALOUTDIGITALOUTDIGITALOUT send data to a digital output port
FIRFILTERFIRFILTERFIRFILTERFIRFILTER apply digital filtering and reduce data volume
LIMITLIMITLIMITLIMIT scan data for values that are out of range
DLIMITDLIMITDLIMITDLIMIT scan data for slopes that are out of range
PIDPIDPIDPID apply closed-loop regulation to a dynamic process
PIDLATCHPIDLATCHPIDLATCHPIDLATCH override for smoothly activating/deactivating PID control
PIDRAMPPIDRAMPPIDRAMPPIDRAMP smoothed transition shapes for control loop level changes
PWMPWMPWMPWM perform pulse width modulation

Chapter 7 Task Definition Using DAPL Expressions 39

7. Task Definition Using DAPL Expressions

DAPL expressions provide flexible means for performing arithmetic and bitwise operations on streams of data.
While an expression statement might look like an “assignment statement” from various familiar programming
languages, it is actually much more. Each expression defines a task that reads from pipes, input channel pipes, or
variables, performs arithmetic and bitwise operations, and puts results into a pipe, output channel pipe or variable.

Expression Syntax

A DAPL expression consists of three parts: a “target” which is the destination for the computed results, an
“assignment operator” represented by an equal sign, and an “expression” consisting of constants, names, and
operators:

<target> = <expression>

Examples:

P3 = P1 + (P2 & $07F)
OPIPE0 = P5*P6 - P7

Target

<target> specifies the destination for computed results. The target must be a defined variable or pipe that can
accept arithmetic data.

Expression

<expression> is a combination of operands and operators that specify the computations to perform.

Expression Operands

Operands are terms that provide data. They can be of the following types:

Named Constant: a shared value of numeric type defined by the CONSTANTSCONSTANTSCONSTANTSCONSTANTS command. This value is “locked” once
the DAPL configuration is started.

Explicit Constant: a numeric value specified directly as a term in the expression. Decimal, hexadecimal, or floating
point constant notations can be used. The notation is unambiguous and is not overridden by the global OPTIONSOPTIONSOPTIONSOPTIONS
DECIMAL=OFF mode that controls data formats.

Variable: a shared word, long, float, or double value residing in shared storage reserved by the VARIABLESVARIABLESVARIABLESVARIABLES
command. Unlike a named constant, a variable value can be changed at any time by another task or the PC host. The
expression task attempts to use the most current value of the variable for its computations.

Pipe: a stream of numeric values of word, long, float, or double type. A pipe operand names a stream of data rather
than individual values. Any pipe that can provide numeric data can be used. The pipe can be a user-defined pipe,

40 Chapter 8 Task Definition Using DAPL Expressions

input channel pipe, or communications pipe. If no data are available from the pipe, the task suspends execution at
that point, waiting for data to arrive.

When pipe operands are evaluated, the expression attempts to extract from the pipe as many values as it can,
consistent with the buffering mode. When buffering is off, only one value is fetched at a time.

Because pipe operands refer to streams of data, not to individual values, each reference to the name of a pipe obtains
access to the entire stream of data. It is as if there are multiple, separate and independent copies of the data stream.
Consequently, the following two commands are equivalent:

 P3 = P1 + P1 + P1
 P3 = P1 * 3

Integer scalars can be expressed in a 32-bit hexadecimal notation. In general, it is a good idea to represent all 32 bits,
explicitly showing sign extension bits, particularly when the values are to be treated as numeric (as opposed to
bitwise) data.

Example: Select the high-order 8 bits from a 16-bit data value.

 POUT = P1 & $0000FF00

Expression Data Types

Inside of DAPL expressions, all values, whether taken from operands or computed, are classified into one of three
internal data types:

• Fixed point
• Bitwise
• Floating point

Data from word or long fixed point pipes or variables are represented as fixed point internal data. Data from float or
double pipes or variables are represented as floating point internal data.

Data types depend on the operators that are applied.

Expression Operators

Operators can be categorized as
• arithmetic operators
• bitwise operators
• shift operators
• negation operators
• grouping operators

Arithmetic operators

Arithmetic operators are infix operators that perform the usual arithmetic operations. They include:

Chapter 7 Task Definition Using DAPL Expressions 41

addition +
subtraction -
multiplication *
division /

Examples:

 P1 + 100

 RAW * SCALE1 / SCALE2

Arithmetic operations applied to bitwise or fixed point data types yield fixed point values. Arithmetic operations for
which one or more of the values is floating point yield a floating point result.

Bitwise operators

Bitwise operators are infix operators that perform the usual Boolean operations of setting, clearing, and inverting
patterns of bits. These operations include the following:

bitwise-and &
bitwise-or |
bitwise-xor ^

Examples:

 P1 & $FF00

 P1 | P2

Bitwise operations cannot be applied to floating point operands or floating point intermediate results. A bitwise
operation applied to fixed or bitwise data types yields a bitwise result.

Shift operations

Shift operations are infix operators that shift the bits of the left-side expression by the number of positions specified
in the right-side expression. The bits can be shifted left or right. The result of a shift is a bitwise value.

The left side expression is a bitwise value, or a fixed point value treated as if it were a bitwise value. Shift operations
cannot be applied to floating point operands or floating point intermediate results. The number of bit positions to
shift can be a fixed point number, or a bit pattern interpreted as a fixed point number, in the range 0-31. For the
special case of a zero shift, there is no change to the original left operand value, but the result is always considered
to be a bitwise pattern.

The shift operations include the following:

shift left <<
shift right >>

Example: Shift the high-order 4 bits of a 16-bit number to the low order position, and force all other bits to zero.

42 Chapter 8 Task Definition Using DAPL Expressions

 P2 = (P1 >> 12) & $0000000F

A left shift has the same effect as multiplication by a power of two, except for the data type of the result. Vacated
low-order bit positions are filled by zeroes.

The effect of a right shift is similar to a division by a power of two. The DAPL system replicates and propagates
whatever bit value happens to be in the high-order (sign) bit position when the shift is applied. This behavior is
common in PC-based compilers, where operands are numeric types rather than bit patterns.

To avoid problems with inconsistent treatment of high-order bits, it is recommended that the modified high order
bits be considered indeterminate after a right shift, and either forced to known values or ignored.

If the number of positions to shift is negative or larger than 31, the shift is treated as an out-of-range condition. The
result will be the same as if the initial bit pattern were shifted a very large number of positions. For the case of a
right shift, this has the effect of setting all of the bits in the bit pattern to match the initial high-order bit. For all other
cases the result is a zero bit pattern.

Negation

There is one negation operator, a minus sign preceeding an operand or subexpression. The result of negating a fixed
point or bitwise expression is a fixed point value. The result of negating a floating point expression is a floating
point value.

negation -

Examples:
 P1 = -P2
 NEGSUM = -(A+B)

Grouping operators

Grouping can be used to control order of evaluation or just to make the evaluation sequence more clear. Terms
inside of the grouping consist of expression operators and operands, and for this reason can be called
subexpressions. Subexpressions can include nested groupings, but this nesting is restricted to 10 levels. There is no
run-time speed penalty for grouping terms. The enclosing parentheses always occur in pairs, and if any open
parenthesis is not balanced by a close parenthesis, the expression is not valid.

begin subexpression (
end subexpression)

Example:
 POUT = (P1 + P2) * (P3 | P4)

A subexpression has the value and data type of the result computed inside the grouping. Because a subexpression
has a value, a negation operator can be applied to a subexpression group.

Chapter 7 Task Definition Using DAPL Expressions 43

Operator Precedence

Operator precedence determines the order in which operators are applied to operands. If operators have the same
precedence, the operations are performed from left to right. However, if operators are at different precedence, the
operators with higher precedence are performed first. The levels of precedence, from highest to lowest, are:

1. Evaluation of primitive operand terms and subexpressions

2. Negation

3. Multiplication and division

4. Addition and subtraction.

5. Bitwise operations and shifts

These same rules of precedence are applied (recursively) for evaluating terms bracketed by sub-expression
parentheses.

Example 1:

P1 = P2+P3*P4|P5

The multiply operation has the highest precedence, so the intermediate result P3*P4 is computed first. The addition
operator has next-highest precedence, so P2 is added to the intermediate result as the second operation. Bitwise-or
has lowest precedence, and is performed last to yield a bitwise result.

Example 2:

P1 = P2 * -(P3+P4)

The subexpression is evaluated at highest precedence. The intermediate sum is then negated, the negation operation
having higher precedence than the multiply operation.

Example 3:

 P3 = P1 & $01 + P2 & $02

It is unlikely that this command will compute the desired result. Because the addition operation has higher
precedence and is performed first, the expression is equivalent to the following, with bitwise operations performed
left to right:

 (P1) & ($01+P2) & ($02)

Example 4:

 POUT = P1<<2 ^ P1>>2

44 Chapter 8 Task Definition Using DAPL Expressions

It is unlikely that this command will compute the desired result. Because shift and other bitwise operations are equal
precedence, the shift and exclusive-or operators are applied left to right. The command is equivalent to the
following:

 POUT = ((P1<<2) ^ P1) >> 2

Buffering During Expression Evaluation

A DAPL expression defines a task in a processing procedure configuration. Because DAPL expressions operate on
streams of data like other processing tasks, they are subject to the same tradeoffs between rapid response and
efficient throughput. To respond to events as quickly as possible, it is necessary to push each value through the
evaluation process just as soon as it appears. But doing this requires extra computing overhead. To evaluate large
volumes of data quickly, it is better to collect data into buffers and process blocks of data rather than single values.
But some amount of time delay occurs while the data accumulates to fill the buffers, leading to a delay in real-time
response. There is a trade-off between response delay and processing efficiency.

As it starts running, each DAPL expression task will examine the current setting of the system BUFFERING option
(see the OPTIONSOPTIONSOPTIONSOPTIONS command) to determine whether to buffer the data or to try to use the data immediately. With the
option BUFFERING=OFF, the expression evaluator task pushes individual values through the sequence without
buffering. With the option BUFFERING=MEDIUM or BUFFERING=LARGE, the expression evaluator sets up buffering
storage and performs evaluation operations on data blocks.

With buffered data, the data arrival patterns in data pipes can be unpredictable, so the position in a data stream
where a change in a variable takes effect can also be unpredictable.

• If there is a backlog of data in memory, the value of the variable could be more current than the data being
processed. If the data are plotted as a function of sampling time, a variable value change could seem to appear at
an implausibly early time. The plot, of course, doesn’t show that the processing of the data was delayed, causing
the data samples and the variable values to be “out of sync.”

• When a variable value is combined with a data stream that arrives early, this can produce intermediate results
that take effect when other data arrive somewhat later. The illusion is that the variable value changed late, or
perhaps not at all. In fact, there was just a full buffer of intermediate values that already included the old variable
value.

Data Extraction

The data representation for fixed point, bitwise, and floating point data internal to DAPL expressions is very
general. The final operation of the expression is to “extract” the results, and “convert” into an accessible form. There
is no guarantee that the computed results will fit naturally into the target specified as the destination for the
computed result. The expression task will do the best that it can to represent the final result accurately.

If the target of the expression is a variable, only one value can be stored. The value selected for storage is the last
one to be computed, the “most current” value.

For both variables and pipes, the data conversion depends upon the data type of the computed result and the data
type of the target structure.

• If the target location stores word data, the value of the result expression is reduced to a 16-bit quantity.
Arithmetic values that are too large or small are bounded at the appropriate limits of their range. Floating point
values are rounded to the nearest integer. Bitwise results drop the high order bits without changing the values of
the remaining low-order bits.

Chapter 7 Task Definition Using DAPL Expressions 45

• If the target location stores long data, the treatment is the same as word data except that the range limits are
much larger.

• If the target location is float data type, a fixed-point value is rounded to the closest numeric value that the
floating point notation can represent. The lowest 24 bits of a bitwise result are retained.

• If the target location is a double data type, the treatment is the same as for float type except that approximations
or truncation are not necessary.

Other Notes on Expressions

Floating point faults (division by zero, overflow to infinity, etc.) result in IEEE “special numbers” such as NAN and
+INF without generating a floating point exception.

With older models of Data Acquisition Processors and past versions of DAPL, shift operations were recommended
as a subsitute for multiplication and division when the multipliers or divisors were powers of two. The advantages
are less clear with CPU devices available on new generations of Data Acquisition Processors. In general, we
recommend that you avoid clever programming tricks.

DAPL fixed point expressions will “saturate” in the event of fixed point overflow conditions. For example, if there
is an attempt to add 1,000 to the value 2,147,483,640, the overflow will be detected and the reported result will be
the maximum representable positive number, 2,147,483,647.

Be careful of multiplying sequences of large numbers in fixed point. Arithmetic operations that attempt to increase
or decrease values too much can reach the saturation limits, and might not have the expected effect.

Fixed point division by zero in a DAPL expression is treated as a limiting case of division by a very small positive
number. If the dividend was positive, the result is saturated to a maximum positive value. If the dividend was
negative, the result is saturated to the largest negative number.

There is no complementation operator for bitwise data. To invert bits, use the exclusive-or bitwise operator.

46 Chapter 8 Task Definition Using DAPL Expressions

DAPL Expression Application Examples

Example 1: Complement the four low-order bits you receive from a digital port, so that instead of “active low” they
are “active high.”

Use the “exclusive OR” operator. Apply a “bit mask” with 1-bits in the positions to be inverted, and with 0-bits
elsewhere.

 P2 = P1 ^ $0000000F

Example 2: Produced statistically unbiased white noise from random numbers.

The RANDOMRANDOMRANDOMRANDOM command produces random numbers in the range 0 to 32767 with uniform probability. If you subtract
16384 from every value, this is almost balanced, but not quite, since the adjusted range is from –16384 to +16383.
To get unbiased random numbers (with triangular distribution on interval –32767 to +32767), generate two random
number streams and use the following expression to combine them.

rand = rand1 – rand2

Example 3: Apply nonlinear sensor calibration.

Many sensors show nearly linear, but not perfectly linear, characteristics. For example, a desired strain measurement
is almost proportional to the observed voltage, but not exactly. You can fit a low-order polynomial curve that will
produce better conversion accuracy than a simple linear approximation.

strain = ST1 + Vmeas * (ST2 + Vmeas * ST3))

Example 4: Simulate a real-time signal by combining multiple waveforms.

DAPL processing commands for computing waveforms have no timing constraints, and they could deliver data in
massive, irregular bursts. To deliver data on a regular basis, use the arrival of an input sample to regulate the timing.
The DAPL expression cannot evaluate until each input sample arrives, but when it does, you don’t need the value of
the sample so force it to zero.

realtime = wave1 + wave2 + noise + IP1*0

Example 5: Hide the bits on a digital port so they cannot produce a trigger event until the supervisory software sets
an enabling variable.

Initialize variable HOSTMASK to zero. This overrides the values that the following DAPL expression places into pipe
maskedpipe, forcing all bits to zero and hiding readings of the digital port received through channel pipe IP(5).

Chapter 7 Task Definition Using DAPL Expressions 47

To make the bits from the digital port visible, the host sends the DAPL system a ‘LET HOSTMASK = $ffffffff’
command. This allows the bits received from the digital port to pass through to maskedpipe unchanged.

maskedpipe = IP(5) & HOSTMASK

Chapter 8 Voltages and Number Representations 49

8. Voltages and Number Representations

The analog and digital inputs and outputs of the Data Acquisition Processor are voltages. The Data Acquisition
Processor converts voltages to integers, performs computations on the resulting integers, and converts integers to
voltages. This chapter explains how voltages and numbers are related.

Analog Input Voltages

The input voltage for each analog input pin is tracked, amplified by the pin’s gain factor, and fed to the analog-to-
digital converter. The gain factor is from 1 to 40, and is specified independently for each input channel pipe. Each
gain setting is independently calibrated, so only a few special values are allowed. After the amplification, the
resulting voltage levels must be within the range limits configured for the analog to digital converters.

Different Data Acquisition Processor models support different voltage ranges, so check your hardware manual. Most
models support the bipolar voltage ranges of -5 volts to +5 volts and -10 volts to +10 volts. Unipolar voltage ranges
start at 0 volts and go up to +5 volts or +10 volts. Unipolar voltages can be measured using half of a bipolar
converter range, and all measurements results will be non-negative values (unless disturbed by offsets or noise). On
DAP models that provide hardware-configurable unipolar ranges, the full converter range is applied to the positive
voltages to preserve an additional bit of precision.

Voltage range selection require hardware configuration, so check your Data Acquisition Processor Hardware
Manual about how to select the voltage range.

The result of sampling an analog voltage is that an analog-to-digital converter generates a binary pattern of bits. The
bit patterns can be interpreted as numbers identifying equally spaced intervals within the voltage range limits.

Digital Input Voltages

Digital inputs are voltage signals with only two significant levels, low and high. Low is represented by a bit with
value 0, and high is represented by a bit with value 1. Data Acquisition Processor inputs follow the standard TTL
specification that any voltage between 0.0 and 0.8 volts is low, and any voltage between 2.0 volts and the supply
voltage, approximately 5.0 volts, is high. Digital signals that originate from TTL-compatible components and
connect through a low impedance cable should never be a problem. Otherwise, voltages applied to digital input pins
must be between 0.0 and 5.0 volts. Digital input devices might be damaged if this precaution is not observed.
Voltages between 0.8 volts and 2.0 volts are regarded as transition voltages, and may be sensed as either low or
high. Avoid voltages in this range except during fast logic level transitions. This reduces the risk of a metastable
latch-up state in which digital circuits can be damaged.

There are pull-up resistors on all digital inputs. Because of these pull-up resistors, unconnected inputs appear as 1’s
when the Data Acquisition Processor measures them.

When digital inputs are captured by a Data Acquisition Processor, 16 input pins of a digital input port are captured
simultaneously. Bit positions are conventionally numbered from 15 down to 0. Though the result is actually a
collection of 16 independent bits, the collection can be processed like a 16-bit number.

Hexadecimal notations are often useful for compactly representing the patterns of bits on a digital port.

50 Chapter 8 Voltages and Number Representations

Conversion Values

The pattern of bits produced by an analog-to-digital converter can be interpreted as an integer value. With a 14-bit
converter, there are 16384 discrete measurement values possible. With a 16-bit converter, there are 65536 discrete
measurement values possible. These values are called conversion values. All conversion values are scaled so that a
reading of zero represents zero volts, and 32768 counts corresponds to the supply voltage range. Due to limitations
of the fixed-point number system, the actual measurement limits are –32768 to +32767. For unipolar inputs,
negative values are not used, so the range of the conversion values is 0 to 32767. To obtain consistent scaling when
converters have fewer than 16 bits, padding bits with value zero fill the low order bits to make a total of 16 bits.

With a 14-bit converter, the padding causes each increment of the converter to increase the numerical conversion
value by 4. For a 16-bit converter, each increase of the converter count by 1 increases its numerical conversion value
by 1, and there is no padding.

The following formula relates the voltage, conversion value, and full scale. Let X represent a conversion value, and
let F represent the full scale voltage — 5 volts or 10 volts. The voltage V that the conversion value X represents is
given by:

V = (X/32768) * F

The range of converter values is not exactly symmetrical. For a 14-bit converter, there is one converter value for 0,
and 8192 converter values for negative numbers, leaving 8191 values for positive numbers. Similarly, for a 16-bit
converter, there is one conversion value for 0, and 32768 converter values for negative numbers, leaving 32767
values for positive numbers. Thus, conversion values are able to reach the negative conversion limit exactly, but
they stop one step short of the positive conversion limit.

• -32768 to +32766 for 14-bit Data Acquisition Processors conversions
• -32768 to +32767 for 16-bit Data Acquisition Processors conversions

Chapter 8 Voltages and Number Representations 51

Binary Representation of Numbers

Within the Data Acquisition Processor, conversion values are represented by 16-bit signed binary numbers. These
are numbers of the form

xxxx xxxx xxxx xxxx

where each “x” represents a “0” or a “1”.

All Data Acquisition Processors are calibrated so that binary 0000 0000 0000 0000 represents zero volts
(ground) in all ranges.

Incrementing the zero value by 1 gives a slightly positive binary result of

0000 0000 0000 0001

Decrementing the zero value to obtain –1 produces a “borrow” action that flips the low order bit and all of the rest of
the bits along with it.

1111 1111 1111 1111

The highest order (leftmost) bit always represents the sign. A number is positive if its highest order bit is 0 and
negative if its highest order bit is 1. Thus we conventionally interpret the first bit as a “sign bit.”

s xxx xxxx xxxx xxxx

In the normal bipolar operating mode, the converters will supply the sign bit and as many of the remaining bits as
possible. Any bits it cannot fill are padded with 0 values. Thus, a 14-bit converter would need two padding bits.

s xxx xxxx xxxx xx00

In a unipolar operating mode, the sign bit will always be 0, so this bit is predeteremined. The coverter can supply as
many of the remaining bits as possible. For this mode, a 14-bit converter would need only one padding bit.

0 xxx xxxx xxxx xxx0

Hexadecimal Representation of Numbers

The binary representation is helpful for illustrating digital lines, but it is too bulky to use directly. For a more
compact notation, the binary notations can be grouped into 4-bit patterns, and each pattern assigned a hexadecimal
(base 16) numerical code.

0000 0 0001 1 0010 2 0011 3

0100 4 0101 5 0110 6 0111 7

1000 8 1001 9 1010 A 1011 B

52 Chapter 8 Voltages and Number Representations

1100 C 1101 D 1110 E 1111 F

With this convention, the following decimal values can be represented using hexadecimal codes as

1111 0001
20202020 0014
----1111 FFFF
0000 0000

To distinguish numbers using a hexadecimal notation in the DAPL system, prefix them with a dollar sign notation:

$0001
$FFFF
$0000

For 16-bit integers, only hex notations $0000 through $FFFF are meaningful. Any bits higher than the first 16
cannot be stored, consequently, any additional nonzero bits are diagnosed as an out-of-range condition. For example,
$0FFF0 would be considered the same as $FFF0, with the leading zero digit not significant, but $FFFF0 is a range
error.

Hexadecimal notations are easily extended to cover 32-bit integers. Simply include an additional four hexadecimal
characters to represent the additional 16 bits of precision.

1111 $00000001
20202020 $00000014
----1111 $FFFFFFFF
0000 $00000000

Both for 16-bit and 32-bit values, the sign bit is covered by the first hexadecimal code. Thus, any hexadecimal
notation with the codes 8, 9, or one of the letters for the first position represents a negative value.

When using a hexadecimal notation, any high-order bits that you omit default to zero. This can produce some
unexpected side effects if you are not careful. For example, you know that the value –1 is represented by the 16-bit
value $FFFF. So, if you initialize a 32-bit value with this, you will get a surprise.

CONSTANT WRONGVALUE LONG = $FFFF

The value of WRONGVALUE is set to 65535, not –1. The unspecified higher-order bits default to zero, including
the sign bit, but to be valid as a negative number the sign bit should be a 1. The correct initialization is

CONSTANT RIGHTVALUE LONG = $FFFFFFFF

There are two places where indeterminate length is a problem for hexadecimal notations, and the behaviors are
different. In DAPL expressions, all unspecified hexadecimal notations are presumed to be 32-bit values, because the
DAPL expressions compute with 32-bit integers. In task parameter lists, there is no prior information about how a
hexadecimal value will be used. If the hexadecimal notation contains four or fewer hex digits, it is presumed that the
notation is intended to define a word value, and the notation is interpreted as a 16-bit WORD value. However, if the
hexadecimal notation contains five or more hex digits, even if they are leading zero digits, it is presumed that the
notation is intended to define a 32-bit LONG value. Consequently, $FFF0 would be interpreted as the WORD value –
16, while $0FFF0 would be interpreted as the LONG value +65520.

Chapter 8 Voltages and Number Representations 53

Interpreting Conversion Values as Binary Fractions

Suppose that the input range is considered normalized, so that the minimum conversion range limit of –32768 means
the value –1.0 and the maximum conversion range bound of +32768 means the value +1.0. Any other value between
the range limits represents a fraction equal to the literal binary value divided by 32768.

In a binary notation, dividing by a power of 2 is similar to dividing by a power of 10 in a decimal number system —
except that instead of shifting the decimal point, it shifts the “binary point.” Dividing by 32768 has the effect of
shifting the “binary point” to the position just after the sign bit in the binary representation. Retaining the convention
that the first, most significant bit is the “sign bit” we can interpret the binary fraction form of a 14-bit conversion
value as

s . xxx xxxx xxxx xx00

or for 16-bit conversion values,

s . xxx xxxx xxxx xxxx

In some processing commands such as FFT that deal with phase angles, the binary fraction representation has an
additional implied scaling factor. For the case of FFT, the implied scaling factor for phase angles is equal to Π, and
the normalized range –1 to +1 represents one complete rotation in phase angle.

54 Chapter 8 Voltages and Number Representations

Number Representations Used by DAPL

The range from -32768 to +32767 produced by converters is too restrictive for some computations. DAPL supports
alternative data types that can be useful for intermediate computations and presentation of final results.

WORD data type

If you are using only simple transfers of captured data, or simple processing such as averaging, the processing is
most efficient in the original 16-bit form. The 16 bit integer values are called WORD values (short signed integers
when developing custom on-board processing commands). In computer storage, each WORD value occupies two
memory bytes. The range from -32768 to +32767 is too restrictive for many computations, and you can quickly
reach the limits that WORD values can represent. If this is a problem, you should consider converting your data to
another data type for processing.

LONG data type

A LONG data type (long signed integers when developing custom on-board processing commands) has 32 bits. This
extends the representable range –2,147,483,648 to +2,147,483,647. The CPU on the DAP can extend convert
between WORD and LONG forms easily, if you are careful about the value range. Each LONG value occupies four bytes
of computer Data Acquisition Processor memory. The larger data type uses more storage space slightly more
computing power to process. When you need very fine and uniform precision, however, the LONG data type is very
useful.

FLOAT data type

The DAP main processor supports floating point computations consistent with IEEE Std 754. The speed penalty for
floating point representations is largely a relic of the past, because of improved hardware support for floating point
computations in current CPU devices.

The FLOAT data type has almost the same processing efficiency as the LONG data types, with 24 bits of precision and
8 bits of exponential scaling. The FLOAT type (also called float when developing custom on-board processing
commands) is very useful when requirements for precision are moderate but flexible scaling is important. DSP
operations with large data blocks or low-level signals typically perform well with FLOAT data, able to retain
information that might otherwise be lost to truncation noise. This is a very versatile number representation, but be
aware that rounding can occur. If you see a result 99999.96 where a value of 100000.00 was expected, do not be
surprised.

DOUBLE data type

When very large data blocks must be analyzed, where information can be lost to rounding errors, where values range
from very small to very large, or where there are many intermediate results before computing a final value, the
DOUBLE data type (also called double when developing custom on-board processing commands) can be very
useful. It provides 12 bits for exponential scaling and 52 bits of precision, both far in excess of anything you will
normally require for data acquisition data processing. There is a slight speed penalty compared to the FLOAT type,
but this is mostly because of the larger element size: each value requires 8 memory bytes. FLOAT type is fine for
most applications, but in special cases where you must avoid accumulating numerical errors, DOUBLE will give you
the best quality results.

Chapter 8 Voltages and Number Representations 55

Complex data types

DAPL does not directly support a complex data type. For processing such as the FFT that accepts or generates
complex-valued results, the complex values are represented by pairs of ordinary numbers. The numbers may be in
any of the data types, but both parts must be in the same data type. When complex values are represented in a polar
form (magnitude and angle) the angle is represented by a binary fraction in integer types, or in the ordinary
numerical range with floating point types.

Conversions Between Data Types

You can use a DAPL expression task to convert values between data types. You must be careful, however, to avoid
assigning values that cannot be represented exactly, or that cannot be represented at all.

You can convert WORD values to LONG values for computation in the higher precision format. To make this
conversion, the original number value is stored in the lower 16-bit positions, and the bit in the sign bit position is
replicated to fill the higher 16-bit positions. This process is called “sign extension.”

A LONG value can be reduced in precision to a WORD value without losing any information provided that the value is
not out of the range that 16 bits can represent. To be valid, all of the upper 16 bits must match the bit in the sign bit
position of the lower 16 bits. If you try to make an invalid conversion, DAPL processing commands will convert
values that are out of range to the nearest value that the 16-bit WORD can represent correctly. This range-limiting
operation is called “saturation.” Processing commands provided by the DAPL system are careful to saturate their
result values, but this is not the default behavior of the arithmetic operations provided by the CPU, so beware of this
when preparing custom processing commands that work with a mix of data types.

You can perform conversions between data types using a DAPL expression task.

FLOATPIPE = WORDPIPE

Converting to Engineering Units

Voltage readings are often scaled to the largest possible range that remains within converter limits. This produces
the best measurement resolution and a good signal to noise ratio. A DAPL expression can be used to convert the
digitized values so that they correspond to the physical units of the measured physical process. If integer values are
inconvenient, floating point values are useful for the scaled values. For example, if the A/D converter channel 0
measure the range from 0 to 100 degrees centigrade, you can convert the binary range from 0 to 32768 into degrees
Fahrenheit using the DAPL expression

DEGF = (IPIPE0/32768.0)*212.0 + 32.0

Chapter 9 Sampling and Updating 57

9. Sampling and Updating

While sampling and updating are primarily under hardware control, they are for the most part configured under
software control, using features of the DAPL system.

Configuration Commands

Data Acquisition Processor boards have a configuration structure. This is in contrast to almost all other data
acquisition devices, which have no such structure. For the other devices, what you get is what you do, process-
defined, and has no existence until programmed code operates device components through driver interfaces.

With the DAPL system, you do not need to address any registers or operate any devices. The DAPL system will do
all of those things for you. But you still must tell the DAPL system about your configuration requirements, so in a
sense this just shifts the location of the problem. The difference is that the configuration takes on a separate
existence, a human-readable form that can be validated independently of the rest of the application. This is
consistent for all Data Acquisition Processor devices.

The DAPL system partitions its configurations into three functional parts. In addition to these, you can declare
shared elements, set global modes and define interconnections. Details about commands discussed in this chapter are
available in the Commands Reference chapter.

58 Chapter 9 Sampling and Updating

Input Sampling Configurations

Input sampling is configured by an input sampling procedure, so named for historical reasons. A procedure begins
with an IDEFINEIDEFINEIDEFINEIDEFINE command that assigns a name, and it terminates with an ENDENDENDEND command.

IDEFINE AssignedName
 // Declaration commands here
END

Input signals are sampled by a single multiplexed sampling device or by a set of simultaneously operated sampling
devices. Depending on the kind of hardware your Data Acquisition Processor has, you will specify the number of
channels or the number of channel groups for your configuration. For a Data Acquisition Processor model with a
single multiplexed converter, use a CHANNELSCHANNELSCHANNELSCHANNELS command. For a model with multiple parallel converters, use a
GROUPSGROUPSGROUPSGROUPS command.

IDEFINE AssignedName
 CHANNELS 24
 // Channel declarations here
END

For some models, the channel groups are software configurable and you can adjust the size using a GROUPSIZEGROUPSIZEGROUPSIZEGROUPSIZE
command.

IDEFINE AssignedName
 GROUPS 3
 GROUPSIZE 8
 // Channel declaration commands begin here
END

When it runs, the sampling procedure will capture data and place it into a data stream called an input channel pipe.
But to do that, you need to specify which hardware signals are used to fill each location in the input channel pipe.
You are not restricted to using hardware channels in any particular order, and you are not restricted to using them
only once, opening possibilities for adjusting effective data rates by sampling the same hardware signal multiple
times. Each channel is assigned a hardware signal pin using a SETSETSETSET command.

SET IPIPE0 D1 // First channel, differential pin 1

The name of the input channel pipe is IPIPE, and the channels in that pipe have the names IPIPE0, IPIPE1, etc.
The channels in the input channel pipe can be listed in any order, but when sampling begins they are processed in
the order of the IPIPE index numbers. When signals are sampled in specific hardware groups, they have a
corresponding group of logical channels that receive values.

SET IPIPE(8..15) SPG0 // Captures pin group 0

The pin designations such as D1 and SPG0 in the examples above specify hardware connections. Whether the signal
goes directly to the Data Acquisition Processor connector or through one of the expansion boards will depend on
your hardware connections. Most DAP models support single-ended analog inputs, which have pin designations
beginning with the letter S (single-ended) for a single channel, or SPG (single-ended pin group) for grouped
channels. Some models support differential analog inputs and use the pin designations with the letter D (differential).

Chapter 9 Sampling and Updating 59

Some models can capture bit patterns from digital ports with pin designators B (for binary port, to distinguish from
the D for differential analog). The differential input configurations use the same hardware pins as the single-ended
configurations, so you will want to be careful when wiring combinations of differential and single-ended signals.
Unused channels can be ignored, but for completeness, it is good to assign them to signal ground G.

IDEFINE AssignedName
 CHANNELS 6
 SET IP0 S0
 SET IP1 S1
 SET IP2 D3
 SET IP3 S0
 SET IP4 G
 SET IP5 G
 // Operational configuration commands begin here
END

It is reasonable to have a variety of inputs wired to your termination boards, but you don’t have to use them all. You
can select just the signals that you need for taking the current set of measurements.

Signals captured as groups have corresponding grouped positions in the input channel pipe, and grouped hardware
pins, each with special designations. In the following example, the first eight locations in the input channel pipe are
reserved for a group of eight single-ended analog signal samples.

IDEFINE AssignedName
 GROUPS 1
 SET IP(0..7) SPG0
 // Other configuration commands begin here
END

After the signals for your current application are assigned positions in the input channel pipe, you can declare
additional properties of the sampling configuration. The most important of these is the TIMETIMETIMETIME command, used to
define the sample-to-sample time interval in microseconds. Most applications can use defaults for all of the rest.

IDEFINE CompletedConfig
 GROUPS 4
 SET IP(0..7) SPG0
 SET IP(8..15) SPG1
 SET IP(16..23) SPG0
 SET IP(24..31) SPG2
 TIME 5.00
 // Special configuration options can go here
END

The input sampling declaration specifies a sampling cycle. The input pins are captured and digitized according to
their sequence in the input channel pipe – not the order in which the configuration is listed. The time interval
between samples is determined by by the sampling time. When the end of the channel list is reached, the cycle
repeats. For the last example, with four groups at 5.00 microsecond intervals, the complete channel list with 32 input
channels is covered in 20.00 microseconds.

60 Chapter 9 Sampling and Updating

Output Updating Configurations

While input processing is called sampling, output processing is called updating. Output values are continuous, but
adjusted to new output levels at periodic intervals. Output updating configurations are similar to input sampling
configurations in many ways. It is easiest to start with a complete configuration and point out the differences.

ODEFINE OutputConfig
 CHANNELS 4
 SET OPIPE0 A0
 SET OPIPE1 A1
 SET OPIPE2 A0
 SET OPIPE3 B0
 TIME 5.00
 // Special configuration options can go here
END

An output procedure is introduced by an ODEFINEODEFINEODEFINEODEFINE command. It does not at this time support grouped signal pins, so
the channel assignments are always single. Instead of an input channel pipe, there is an output channel pipe OPIPE,
and the channel assignments describe the locations OPIPE0, OPIPE1, etc. in the output channel pipe. There
currently is not an analog differential output option, so all the analog output pin designations begin with “A for
Analog.” The digital output ports remain “B for Binary”. And finally, the TIMETIMETIMETIME command indicates the time interval
between in microsecond between each update operation.

An output configuration must be provided a signal source for each location in the output channel pipe. Similar to the
input channel pipes, updating is performed in the order of the channel pipe locations, not the order in which they are
declared.

Chapter 9 Sampling and Updating 61

Reader and Writer Constraints

After the input procedure configures the input sources and an output procedure configures the output destinations for
data, processing commands define the connections. Processing is defined in one or more processing procedures,
beginning with a PDEFINEPDEFINEPDEFINEPDEFINE command and ending with an ENDENDENDEND command.

PDEFINE ProcessName
// Define processing tasks here
END

All processing in the DAPL system is multi-tasking. That means there is no way to predict the exact order of
execution of calculations. If exact sequencing of calculations is critical, they must be packaged as a single
monolithic command that embodies all data processing. As long as all of the processing consumes input data at a
consistent rate, and supplies data for outputs at the rate needed, the processing can proceed continuously.

Data will remain in memory until all tasks that need to process the data have done so. If for some reason a task is
unable to continue, a backlog of data will accumulate in memory.

When a processing configuration is started, it could receive data from the input channel pipe, and it could send data
to the output channel pipe. With multi-tasking, it can become quite confusing trying to figure out which task
consumes which data from the input channel pipe, and which task provides data to the output channel pipe. To help
avoid this confusion, the DAPL system enforces the following rules for reading data from pipes.

1. Multiple tasks can read from data sources, including the input channel pipe.

2. Tasks can read any set of channels from the input channel pipe. A subset of channels is indicated using the
IPIPE notation. For example, to process channels 0 through 3 and 8 through 11, specify the following pipe
name.
 IPIPE(0..3,8..11)
A strict ascending sequence is not mandatory, but processing is most efficient this way because the DAPL
system does not need to shuffle the data before sending it to the processing task.

3. Every task that specifies one of the channels will receive a copy of ALL data from that channel.

4. Only tasks in one start group can read data from the same pipe. It is possible to partially circumvent this
limitation by copying the data to a separate pipe for transfer to a task in another start group.

When a processing task receives data from multiple channels, the data are organized in a multiplexed fashion, one
sample from each channel in the specified channel list, and then this pattern repeats.

Because every task receives its own copy of every sample from every channel it reads, this presents a very
convincing illusion that every reference to IPIPE spawns a completely separate and independent pipe with its own
separate and independent data stream. We often speak of multiple IPIPEs, though there is actually only one
underlying data stream containing all of the sampled input data.

Sending data between tasks also has an important constraint.

1. Only one task can write to a destination pipe.

62 Chapter 9 Sampling and Updating

References to channels in an output channel pipe act somewhat like references to separate output pipes, so at least in
theory you could have more than one. There are many ways to get into trouble with this, however. For example,
suppose a single task produces two output sequences, OUTA and OUTB. The configuration assigns OP4 to the task’s
OUTA parameter, and OP3 to the task’s OUTB parameter. This should deliver the two data streams to the output
procedure.

• The processing task performs a write operation to OUTA, resulting in data transfer to the output procedure
for channel OP4. This operation must completed before the processing task can continue and send the data
to OUTB.

• The output procedure does not have data for channel OP3, which arrives via OUTB. It cannot use the data
from OP4 and cannot complete the data transfer, so it waits for the channel 3 data to arrive. But because the
processing task is already waiting, the needed data will never be sent. The two tasks are deadlocked.

One simple way to avoid this kind of problem is to collect output values and send them to output updating as a
single task, in the right sequence.

MERGE (OUTB, OUTA, IFLAG, PIPE4, OPIPE(0..3))

Chapter 9 Sampling and Updating 63

Starting and Stopping

Configurations can be downloaded to the Data Acquisition Processor board at any time. When the host application is
ready to run, it sends a STARTSTARTSTARTSTART command.

START

When the application is completed, it sends the STOPSTOPSTOPSTOP command.

STOP

When there is no further use for the configuration, it clears the DAP memory using a RESETRESETRESETRESET command.

RESET

Advanced applications can download multiple configurations and select them by name. For most applications,
however, the easiest way to manage configurations is to RESETRESETRESETRESET the old configuration and download a new one. A
conventional practice, and a good one, is to begin each new configuration with a RESETRESETRESETRESET command to clear out any
configuration that might have been downloaded to the Data Acquisition Processor previously.

When a configuration is started, the DAPL system will go through the following sequence to locate the procedures
to run.

1. If an output procedure is specified by the STARTSTARTSTARTSTART command, start it. If no output procedure is specified by
the STARTSTARTSTARTSTART command, look for one, and start the first one found.

2. If an input procedure is specified by the STARTSTARTSTARTSTART command, start it. If no input procedure is specified by the
STARTSTARTSTARTSTART command, look for one, and start the first one found.

3. Start all specified processing procedures. If no processing procedures are specified, look for all configured
processing procedures and start them.

You can override this start-up sequence for special situations, but the default sequence is the one that is least likely
to result in problems, particularly when using some of the more advanced hardware options.

Output updating can do very little as it starts, because data sources are not yet activated. Output processing suspends
until the rest of the start-up sequence provides the data connections and provides some data to send.

Starting the input processing is also relatively fast. Data arrive from external sources so hardware sampling cycles
begin almost immediately. The connections have not yet been established between the input, processing, and output,
however, so some data must be temporarily buffered in memory until the rest of the start-up initialization completes.

As processing configurations are started, the pipe connections are completed between data sources and to output
destinations. Once all of these connections are established for a processing task, it becomes available to be
scheduled for execution. When all tasks are running and all connections between data sources and destinations are
consistent, the configuration can proceed to operate continuously.

64 Chapter 9 Sampling and Updating

Starting under hardware control

Data Acquisition Processors have hardware features to allow the starting sequence to be controlled by an external
digital signal. These features are known as hardware triggering.

To enable hardware triggering for input sampling, place an HTRIGGERHTRIGGERHTRIGGERHTRIGGER command in the input procedure definition.
To enable hardware triggering for output updating, place an HTRIGGERHTRIGGERHTRIGGERHTRIGGER command in the output procedure
definition. For example, an output procedure configured with hardware triggering might look like the following.

ODEFINE OutputConfig
 CHANNELS 1
 SET OPIPE0 A0
 TIME 5.00
 HTRIGGER ONESHOT
END

The STARTSTARTSTARTSTART command is still required: it determines which configurations to run. The startup sequence is basically
the same as before, but input sampling suspends at the place where the hardware capture of samples or the hardware
updating of output signals would ordinarily begin. Activity begins quickly when the controlling hardware trigger
input is received.

The HTRIGGERHTRIGGERHTRIGGERHTRIGGER command can specify a ONESHOT or GATED mode, for activity controlled by a logic transition or by
a logic level on the input line.

Stopping under clock control

Sometimes data collection or signal generation is required for only a limited time. For example, in a crash test, after
a few milliseconds of intense action, there is nothing left to measure. Or for output signal generation, after ramping
the signal through the full range, the test is done. These configurations can finish after a known period of time,
which corresponds to a known number of samples or updates. To specify an automatic shutdown, include a COUNTCOUNTCOUNTCOUNT
command in the input or output configuration. For example, the following input configuration stops automatically
after collecting 10000 measurements for each of two channels.

IDEFINE Collect10000
 CHANNELS 2
 SET IPIPE0 D0
 SET IPIPE1 D1
 TIME 40.0
 COUNT 20000
END

Involuntary stopping: Underflow and Overflow

Updating and sampling are under the control of a programmable state machine in the DAP system – that is to say, it
is a hardware process. The data sampling process expects that it will have a place to store its data. If it does not, this
is called an overflow condition, and the DAPL system has three alternatives.

1. Fail quietly, overwriting existing data. Most simple acquisition devices will do this. It is forbidden on a
DAP system. DAP systems will never lose data, and never corrupt existing data.

Chapter 9 Sampling and Updating 65

2. Generate a fault. Unfortunately, it is not in general possible for the DAPL system to know what it should do
in response to the fault. Unprocessed data could be lost, and this is unacceptable in a DAP system.

3. The DAPL system stops the sampling process, logs a warning, and leaves all other processes running.
Other processing can continue so that any samples previously captured are processed normally, until all are
processed, and then the processing must suspend.

Memory overflow conditions typically result when trying to perform too many calculations on too many channels,
or when trying to transfer more samples to the host than its data bus can handle.

Similar hazards occur with output updating. The updating process expects that it will have an update value ready
when its output clocking pulse arrives. If it does not, this is called an underflow condition, and the DAP hardware
again has only a few alternatives.

1. Fail quietly, placing garbage data on the output port. This is forbidden on a DAP system. DAP systems will
never send undefined update values to an output port.

2. Generate a fault. Unfortunately, it is not in general possible for the DAPL system to know what it should do
to correct the fault.

3. The DAPL system stops the updating process, logs a warning, and leaves all other processes running. Some
kind of supervisory follow-up action should be taken to shut down other processing in an orderly fashion
before a backlog of unprocessed data forces other tasks to suspend.

Underflow conditions are typically the result of overloading the DAP board’s processor – so that the tasks that are
supposed to generate the output data do not get sufficient opportunity to run – or providing an incorrect number of
update values for the output updating to use.

Premature underflow and OUTPUTWAIT

Because of the uncertainties about the execution order of independent processing tasks, it is uncertain exactly when
data will be available for the output updating to use. Suppose that data for output are generated in blocks. Time is
required to collect the data for processing a block. Even if calculations are done at a sufficient rate, if a data block
arrives too late, the output updating will underflow.

Hardware-based processing cannot tolerate the delays. It must have a sufficient amount of buffered data to weather
any short-term delays. The most dangerous time for output underflow is during application start up. Several tasks
start in quick succession, each of them establishing pipe connections and performing other setup operations. It is
very easy for a task to compute a few values, enough to get the output updating started, but not enough to keep it
going while other tasks start.

To avoid these transient underflow events and premature shutdown, an output procedure will not begin delivering
output updates until it has in its buffers sufficient data to sustain 1/10 second of activity. The OUOUOUOUTPUTWAITTPUTWAITTPUTWAITTPUTWAIT
command can be used to adjust this behavior, but most applications should use the default to avoid a premature
underflow condition. As a side effect, output updating is always subject to a time delay for cycling through all of the
data previously sent for output processing.

66 Chapter 9 Sampling and Updating

Burst mode

There are some situations in which input or output processing is intermittent. For example, input data collection
might be initiated by an event such as a “top dead center” pulse for engine ignition. After some period of time, data
collection can stop. This processing can occur several times, and it is not convenient to restart the configuration for
each firing event. For output processing, a sonar “ping” might require an intense burst of output activity, but then no
action until an external activation signal prompts for the next tone burst. In applications such as these, it is
convenient to let the input or output procedures stop and then re-initialize themselves, so that the next triggering
pulse is the same as starting over from the beginning, but with very low overhead. This kind of intermittent
processing is called burst mode.

To configure burst-mode processing for an input procedure, include the HTRIGGER ONESHOTHTRIGGER ONESHOTHTRIGGER ONESHOTHTRIGGER ONESHOT commands to enable
starting under hardware trigger control, the SAMPLE BURSTSAMPLE BURSTSAMPLE BURSTSAMPLE BURST command to enable the automatic resets, and a COUNTCOUNTCOUNTCOUNT
to terminate sampling after the data are collected.

IDEFINE CollectBurst
 CHANNELS 2
 SET IPIPE0 D0
 SET IPIPE1 D1
 TIME 2.50
 HTRIGGER ONESHOT
 SAMPLE BURST
 COUNT 40000
END

A burst mode configuration for output updating is similar, but easier. Use the UPDATE BURSTUPDATE BURSTUPDATE BURSTUPDATE BURST command.You don’t
need to specify the COUNTCOUNTCOUNTCOUNT to stop the updating if you provide a block of data of sufficient size and just let the
updating continue until the data are exhausted. This underflow is expected and does not produce warnings. You also
don’t need the HTRIGGERHTRIGGERHTRIGGERHTRIGGER command if you supply data in a single long block and let the OUTPUTWAITOUTPUTWAITOUTPUTWAITOUTPUTWAIT condition
initiate the sampling.

ODEFINE SendPulse
 CHANNELS 1
 SET OPIPE0 A0
 TIME 4.80
 UPDATE BURST
 OUTPUTWAIT 1000
END

Chapter 9 Sampling and Updating 67

Using Software Triggering

Hardware triggering for input sampling is very useful when there is a device already present in the measurement
system to generate timing pulse at just the right time. But hardware triggering has limitations.

• Complexity. If you don’t have the necessary timing pulse, getting one can be a problem.

• Cost. Avoiding unnecessary control hardware can mean a considerable cost savings.

• Test criteria. For example, how would you fire a hardware logic gate whenever a signal of sufficient
strength is present in the band from 220 to 260 Hz?

• Pre-event analysis. Hardware triggering suspends sampling activity until an event arrives. If you need to
analyze data prior to the event, you won’t have it.

• Controllable duration. After data collection starts, you have few hardware options for how to stop it.

You can avoid some of the costs and limitations of hardware-only triggering, provided that you have sufficient
processing power – which is the normal case with Data Acquisition Processor boards. DAP boards can measure and
discard data with extreme efficiency. When something interesting is detected in the data, that part of the data can be
kept. This strategy is called software triggering.

To use software triggering, start your configuration for continuous operation without any special hardware option. In
your processing procedure, you direct the signal where events can be detected into a trigger generating (trigger
writing) task such as LIMITLIMITLIMITLIMIT. For the example of detecting a 220 to 260 Hz tone, run the signal through a digtal
bandpass filter, and then allow LIMITLIMITLIMITLIMIT to look for high peaks. When the trigger writer detects an event condition, it
posts that information to a TRIGGERTRIGGERTRIGGERTRIGGER element, which is very much like a data pipe except that it is dedicated to
processing event information. A responding task (trigger reader) such as WAITWAITWAITWAIT will extract the relevant data from
any number of data channels and route them for further processing.

68 Chapter 9 Sampling and Updating

Internal and External Clocking

After you have a configuration set up and started, it can begin to collect samples and issue outputs. But there is
sometimes a question about exactly when these actions should occur. One common special case is rotating
equipment, instrumented with a high-resolution optical encoder that produces logic pulses at accurate angular
positions for each rotation. At a fixed speed, encoder pulses and fixed digital timer pulses are equivalent. But when
the speed is not fixed, samples captured on a fixed timer would no longer represent equal angular positions.

Data Acquisition Processor boards give you options: data capture timed by an external logic signal, data capture
with the onboard precision clock, or a combination.

Channel List Clocking

The CLCLOCKING ONCLCLOCKING ONCLCLOCKING ONCLCLOCKING ON command tells the DAPL system to capture samples or update its output ports using the on-
board precision clock, at time intervals configured by the TIMETIMETIMETIME command. If not specified, CLCLOCKING ONCLCLOCKING ONCLCLOCKING ONCLCLOCKING ON is
assumed by default.

ODEFINE TrackEncoder
 CHANNELS 2
 SET OPIPE0 B1
 SET OPIPE0 B2
 TIME 28.8
 CLCLOCKING ON
END

External clock

Use CLCLOCKING OFFCLCLOCKING OFFCLCLOCKING OFFCLCLOCKING OFF when an external clock signal rather than the onboard digital timer determines the sampling
or updating instants.

With external clocking, each sampling or updating instant is determined by an external logic signal, such as an
encoder pulse. To obtain this behavior, place a CLOCK EXTERNALCLOCK EXTERNALCLOCK EXTERNALCLOCK EXTERNAL command into your input or output configuration.
You also need to override the default timing behavior with a CLCLOCKICLCLOCKICLCLOCKICLCLOCKING OFFNG OFFNG OFFNG OFF command.

IDEFINE ClockedSampling
 CHANNELS 1
 SET IPIPE0 S10
 TIME 20.0
 CLOCK EXTERNAL
 CLCLOCKING OFF
END

Using the hardware external clocking does not affect various other features such as triggering. The TIMETIMETIMETIME command
does not determine the sample-by-sample interval, but it informs the DAPL system of approximately the time
interval to expect, to assist the system in making good decisions about internal memory allocations and data
buffering.

Chapter 9 Sampling and Updating 69

A combination

Data Acquisition Processors allow a unique combination of channel list clocking in combination with external
clocking. When there are several signals to be measured, the external clock signal can indicate when to sample the
first one, and then the internal clock signal can be used to capture measurements in rapid succession for the rest of
the channels in the procedure’s channel list.

IDEFINE Measure4Chan
 CHANNELS 4
 SET IPIPE0 D0
 SET IPIPE1 D1
 SET IPIPE2 D2
 SET IPIPE3 D3
 TIME 2.5
 CLOCK EXTERNAL
 CLCLOCKING ON
END

70 Chapter 9 Sampling and Updating

Pipelining and Burst Mode

Pipelining is a widely used technique for increasing data capture rates. With it, the input signals are allowed to
settle, while simultaneously conversion is underway for another sample and a third sample result is transported
across a digital data bus. The processing of these operations, performed at the same time by coordinated electronic
elements, is called pipelined processing. The net conversion rate is faster, but the side effect is that the value
produced on a given clock pulse is not really the current sample! It is really the result of the most recently completed
conversion. The real “current sample” is still in electronic form within the conversion pipeline.

When using a burst mode with onboard clocking, the DAPL system knows about its pipeline, and it knows about its
clock. It can use extra clock pulses to clear out extraneous old history from its pipeline, so that the first value you get
out will be the first value actually measured in the current burst. You don’t need to think about it.

With external clocking, however, the DAPL system does not have the same degree of hardware control. The number
of samples you get will be the number of samples you clock out. The first one or two samples you clock out could
be old history carried forward in the pipeline from a previous burst, far in the past. In rare cases, these arbitrarily
delayed samples might be meaningful despite the delay in receiving them. Most of the time, however, the easiest
thing to do is collect a few extra samples and discard the extraneous samples from the beginning of the block. You
can test your configuration to determine whether pipelining has produced extraneous samples. Or check your Data
Acquisition Processor hardware manual for information about how many extraneous samples will be produced from
the sampling pipeline in burst mode.

This is not a DAP design problem – it is a universal problem for analog-to-digital converter devices with pipelined
input stages. The people who work with converter devices regularly will expect to see this. The rest of us have to be
careful.

Fast sampling

The conversion pipeline sometimes provides benefits besides a general boost in throughput. Data Acquisition
Processor fast sampling is one of these extra advantages. If you are reading a mix of digital and analog signals, the
digital signals need no conversion and hence no pipeline, but they do need settling time. The DAPL system is aware
of this. If you have a mix of digital and analog inputs, DAPL allows the analog hardware settling time to overlap the
digital hardware settling time. The net effect is that the combination can be allowed to operate at a faster sampling
rate than would normally be possible.

Chapter 9 Sampling and Updating 71

Buffering and Latency

Data Acquisition Processor board capacity and the delays in transporting data through the DAPL system are greatly
influenced by the degree to which sample values are collected together before processing. The Data Acquisition
Processor architecture is designed primarily for acquiring large amounts of data on many channels.

Hardware buffering

To operate conversion devices with accurate timing and without losing any data requires an extraordinary amount of
attention from a control processor. All data acquisition devices face problems with hardware control, with different
kinds of solutions.

1. Custom-designed DSP processor solution. For those who have the time and expertise to develop it, a
custom-engineered DSP processing board dedicated to converter device operation will provide the ultimate
in performance at the ultimate in costs. The software can be optimized to meet stringent timing
requirements – for one application.

2. Simple hardware buffering solution. For lowest costs, simple acquisition boards depend on their host
processors for almost everything. Workstation systems have their own agenda (an enhanced multimedia
experience), and most processing resources are dedicated to those purposes. Because attention from the
host is unpredictable and subject to delays, the data must be collected by the hardware into relatively large
hardware memory buffers and held there until the host is available. If the buffers are long enough, the
probability of losing data is small, but application software in the host must be very careful about process
timing.

3. Intelligent buffering solution. An intermediate between the two cases above, Data Acquisition Processor
systems include hardware-level buffering but also dedicated onboard processing. Thanks to the guaranteed
availability of processing, there is less hardware buffering delay. While faster and much more flexible than
the elementary hardware buffers of simple acquisition devices, any hardware buffering at all impedes
value-by-value processing, so performance cannot match an optimized custom DSP design.

Whether one value or 100 values are obtained from the hardware buffer, the overhead for accessing the buffering
hardware is about the same. If a Data Acquisition Processor can meet timing constraints to access one channel, it can
probably meet the same timing constraints on 20 or 30 channels operating in parallel.

Pipe system buffering

As the DAPL system removes samples from the input buffer hardware, it moves them into the onboard main
processor memory. Sample values are organized by the pipe system, with memory allocated and values indexed so
that they can be delivered upon request when an application needs them. Buffering can store vast amounts of data, or
very little, depending on the demands of the application.

For moving single values through quickly, the memory allocation and indexing overhead of the pipe system is small,
not much more than operation of hardware devices. However, a small amount of processing overhead remains. This
is enough to constrain the rates at which the DAPL system can produce individual responses.

72 Chapter 9 Sampling and Updating

Tasking effects

The DAPL system depends on processing tasks to move data. If there is no data analysis onboard, at a minimum the
DAPL system must copy input samples to the host, and this takes one processing task.

Each processing task acts like an additional buffering delay. A task will convert its input data stream to produce a
new data stream of results, which will use additional pipe system memory. Even if the tasks perform no analysis, the
operations to move data into and out of pipes will cause some delays. If there are multiple processing tasks, the
execution order of tasks is indeterminate, and this results in corresponding indeterminate time delays before the
tasks deliver results.

Buffering delays are influenced by the task scheduling interval. If tasks are allowed to run for a longer time, they
tend to collect more data from input sources and deliver results in larger groups, with better processing efficiency
but larger buffering delays. To give the tasks less time to collect and buffer data, you can reduce the task scheduling
time quantum using the command

OPTIONS QUANTUM=<interval>

where the <interval> value can be as small as 200 microseconds.

Having said all of this, the worst-case time delays from sampling all the way through to delivery of results will
typically be better than host workstation delays at their best.

Chapter 9 Sampling and Updating 73

Chapter 10 Data Transfer 75

10. Data Transfer

Communication pipes (com pipes) are first-in-first-out buffers for communication between a Data Acquisition
Processor and its host. Com pipes allow text or binary communication, though binary is strongly recommended for
transferring bulk data.

This chapter summarizes the communication pipes and the tasks through which DAPL sends and receives data.

76 Chapter 10 Data Transfer

Standard Com Pipes

The default configuration for a Data Acquisition Processor has four standard com pipes: $SysIn, $SysOut,
$BinIn, and $BinOut. $SysIn and $SysOut are text com pipes for reading data from and writing data to the host.
All commands to the DAPL interpreter are read from $SysIn; all status and error messages are sent to $SysOut.

$BinIn and $BinOut are binary com pipes for reading data from and writing data to the host. They are not pre-
configured to associate with any particular tasks.

Sending Text to the PC

The FORMATFORMATFORMATFORMAT command can be used to encode and send text data to the PC. The encoding process is not efficient.
Though text displays are very useful during test and development, to get a quick peek at data to verify validity,
binary data transfers are better for almost all other purposes.

In addition to streamed data from pipes, a FORMATFORMATFORMATFORMAT task can send data from variables or strings. If several FORMATFORMATFORMATFORMAT
tasks are active at one time, each FORMATFORMATFORMATFORMAT task can send a different identifying string. This lets programs in the PC
determine which FORMATFORMATFORMATFORMAT task sent each line of data.

Chapter 10 Data Transfer 77

Sending Binary Data to the PC

Most DAPL commands can send binary data to the host, simply by streaming data into the $BinOut communication
pipe. The simplest way to send binary data is the COPYCOPYCOPYCOPY command.

If data streams from several pipes are to be sent to the PC, it is necessary to merge the data streams. DAPL provides
several merging commands for this purpose. If data enter several pipes at the same rate, from sources with similar or
different data types, a MERGEMERGEMERGEMERGE task can be used to combine and deliver the data. If data enter the pipes at different
rates, the command MERGEFMERGEFMERGEFMERGEF can be used to tag the data with source identifier codes prior to transfer. If data enter the
pipes at different but proportional rates, the command NMERGENMERGENMERGENMERGE can be used.

The commands BMERGEBMERGEBMERGEBMERGE and BMERGEFBMERGEFBMERGEFBMERGEF are more efficient blocked versions of MERGEMERGEMERGEMERGE and MERGEFMERGEFMERGEFMERGEF for processing
bulk data. A BMERGEBMERGEBMERGEBMERGE or BMERGEBMERGEBMERGEBMERGEFFFF task reads blocks of data from multiple pipes and writes the blocks to the output
pipe. The output pipe usually is $BinOut. BMERGEFBMERGEFBMERGEFBMERGEF adds an identifying flag to each block of data, something like
MERGEFMERGEFMERGEFMERGEF, but much more efficient.

78 Chapter 10 Data Transfer

Reading Text from the PC

The DAPL command interpreter receives all data sent to a Data Acquisition Processor through $SysIn. This com
pipe also can be used to put data into pipes with the FILLFILLFILLFILL command, or to set the values of variables with the LETLETLETLET
command.

Custom processing commands that need to receive special instructions from the host in text form can do this by
setting up a separate communication pipe, and configuring it to transfer text.

Reading Binary Data from the PC

Binary data can be sent from the PC to the Data Acquisition Processor through the communication pipe $BinIn. If
the PC sends multiplexed data, a SEPARATESEPARATESEPARATESEPARATE task can be used to break out the data streams in the Data Acquisition
Processor. If each data stream has a different rate, the PC can append flags to the data sent to the Data Acquisition
Processor and use SEPARATEFSEPARATEFSEPARATEFSEPARATEF task to break out the data streams.

Additional Com Pipes

In addition to the default com pipes $SysIn, $SysOut, $BinIn, and $BinOut, other communication pipes can be
defined. The Data Acquisition Processor can support several binary and text communication pipes transmitting and
receiving simultaneously. The additional pipes are configured in the DAPcell control panel application.
Communication pipes can also be configured by software applications, using features of the DAPIO32 programming
interface.

Chapter 11 Resource Allocation 79

11. Resource Allocation

This chapter describes how the DAPL operating system manages shared CPU and memory resources.

Processing Time Allocation

As a multitasking operating system, DAPL is responsible for allocation of processor resources among all the tasks
that are active at any time. DAPL is responsible for giving priority to certain critical tasks that are necessary for
error-free data acquisition. Once reliable system operation is assured, processing tasks defined by task definition
commands are allowed to perform all other required processing.

The DAPL operating system is responsible for switching repeatedly among tasks. This means that DAPL maintains
a run-time environment for each active task. When a task is active and is running, the environment is found in the
processor’s registers and stack. When a task is active, but is not running, the run-time environment is saved in
memory. When DAPL switches between tasks, one task’s environment is saved to memory and another task’s
environment is recalled from memory.

DAPL switches between tasks for one of the following reasons:

1. a task used up its maximum CPU time allocation, and another task must be allowed to run;
2. a task has no data to process and explicitly requests a task switch;
3. a system operation supplied data that a higher priority task needed to continue its processing;
4. a system timing operation allowed continuing a task that was previously awaiting the timing event.

More information about task priorities and scheduling is provided in the chapter on Prioritized Multitasking.

Under the default options assumed when the DAPL system is initialized, the maximum time allocation allowed per
task is typically 2000 µs. This setting can be adjusted using the QUANTUM option. A setting of 200 µs is typical when
low response latency is required.

Note: See OPTIOOPTIOOPTIOOPTIONSNSNSNS in the command reference for information on setting scheduling options.

For information about optimizing processor performance see Chapter 12.

Output Channel Access

When several tasks share an output device (usually a text or binary com pipe), the multitasking nature of the DAPL
operating system becomes apparent. An example of this is an application that has several FORMATFORMATFORMATFORMAT tasks active at one
time. In this sort of application, it normally happens that one FORMATFORMATFORMATFORMAT statement sends several lines of data before
using up its time allocation, and then another FORMATFORMATFORMATFORMAT statement sends several lines of data. There is no way to
predict the order in which the Data Acquisition Processor delivers the combined text data, or how many lines each
FORMATFORMATFORMATFORMAT statement will send at each opportunity. To distinguish the data from different FORMATFORMATFORMATFORMAT tasks, each FORMATFORMATFORMATFORMAT
task can send a string to the PC as part of each line. This allows a program in the PC to determine the source of the
data for each line of text.

Note: A FORMATFORMATFORMATFORMAT task sends only full lines; DAPL prevents interleaving parts of two or more lines of output.

80 Chapter 11 Resource Allocation

When sending binary data from a Data Acquisition Processor to the PC, an identifying number must be used rather
than an identifying text string. MERGMERGMERGMERGEEEE, MERGEFMERGEFMERGEFMERGEF, BMERGEBMERGEBMERGEBMERGE, and BMERGEFBMERGEFBMERGEFBMERGEF allow interleaving of binary data from
several sources without loss of information.

Memory Allocation

The DAPL operating system has efficient algorithms for allocating RAM memory for all of the data structures in
DAPL. Some structures are allocated once during their definition phase and de-allocated when their life cycles end.
Others grow and shrink dynamically as required by the flow of data. A memory allocation fails only when there is
no contiguous memory available in the RAM to satisfy the request.

Command modules will allocate a certain amount of memory to define a shared code area and command
management structures at the time a command module is loaded. This is a one-time allocation and it is not released
until the command module is unloaded by external utility or by an ERASE command.

When a task is defined invoking one of the available processing commands, and that task is started, it will receive an
allocation of memory from a special region of memory called heap memory. The allocated memory will provide a
stack area for function and subroutine calls and local memory. It will also contain its own copy of all “global”
variable values, so that multiple tasks using the same type of command will not interfere with each other’s internal
variables. After starting, a task may request additional memory blocks to be used for the lifetime of the task. To
determine the total amount of available heap memory and the amount of memory available for data storage, start the
processing configuration and run the command DISPLAYDISPLAYDISPLAYDISPLAY HMEM.

The amount of memory available for data storage can change as a configuration runs, so the displayed value might
not be exact. Pipes can temporarily allocate memory blocks for data transferred through pipes. Processing tasks can
also create and free dynamic objects at any time during execution. When processing is terminated, these allocations
are released automatically.

If there is insufficient free memory to satisfy a request for a new memory allocation, this produces a memory
overflow condition. The task will be terminated, and an error message will be issued. Termination of a task usually
blocks execution of other tasks, leading to a complete shutdown of processing.

Chapter 12 Optimizing Processor Performance 81

12. Optimizing Processor Performance

This chapter provides suggestions for getting the maximum performance from the Data Acquisition Processor.

Reducing Processor Load

DAPL 3000-compatible Data Acquisition Processors have high-speed processing power, optimized software, and a
large RAM buffer. In some applications, the Data Acquisition Processor is pushed to its limits; in others the Data
Acquisition Processor spends most of its time waiting for data. Dynamic performance of the Data Acquisition
Processor depends upon the input data stream, the number of tasks, the types of tasks, communications overhead,
CPU clock speed, host PC speed, and other factors.

The Data Acquisition Processor uses a small amount of time for each operation that moves a value into a pipe or
takes a value out of a pipe. Processing data in large groups tends to be more efficient than processing the same
amount of data in small groups.

Processing more data generally takes longer than processing less. If large amounts of data are reduced to smaller
amounts early, that saves processing power. If an application requires averaging, for example, it is best to perform
the averaging on the raw data so that further processing is performed on a reduced number of points.

In most cases it is faster to process and reduce data in the Data Acquisition Processor than it is to transmit the data to
the PC Host and then process and reduce the data there. Even if the PC host has a very powerful processor, that
processor is mostly occupied with operating graphics, keyboard, pointing device, disk, networking, and other
functions besides processing your data.

Digital Signal Processing

Digital signal processing is possible with all Data Acquisition Processor models, but keep in mind the limitations of
the processor. FIRFILTERFIRFILTERFIRFILTERFIRFILTER, FFTFFTFFTFFT, and other digital signal processing tasks are highly optimized, but computationally
intensive. For fastest processing, try to limit the number of computations that the Data Acquisition Processor must
perform. When using a low pass digital filter, for example, consider computing averages of small blocks before
applying the filter. Averaging reduces the number of filter taps required, as well as reducing the number of data to
process. When computing FFTs, try to compute only the number of blocks and frequency resolution you need. If the
data are to be plotted on the PC’s screen, for example, it usually is possible to limit the size of the transform
according to the screen resolution.

Communication Formats

To speed transfers of bulk data from the Data Acquisition Processor to the PC, use binary format. This eliminates
the time-consuming format conversion from binary to text. Binary format also requires transmission of fewer bytes
from the Data Acquisition Processor to the PC.

82 Chapter 12 Optimizing Processor Performance

Channel Pipe Efficiency

The configuration of input and output channel pipes affects the efficiency of tasks that read and write channel pipe
data. The following list shows possible channel pipe configurations in decreasing order of efficiency:

1. task with a channel pipe list using all channels
2. task with a single channel pipe
3. task with a channel pipe list of some, but not all, channel pipes

Chapter 12 Optimizing Processor Performance 83

Streaming Data to the PC

Some applications require high-speed data acquisition without real-time data processing. The COPYCOPYCOPYCOPY command is a
good choice when all data streams are the same type. Even better is the BMERGEBMERGEBMERGEBMERGE command when processed data can
be moved in larger blocks. The MERGEMERGEMERGEMERGE command can transfer a mix of data types, but the packing of data is less
efficient. Binary transfers stream data to the host in binary format. The most efficient transfers use a single source
pipe (such as an input channel pipe with channel list). Microstar Laboratories DAPstudio software can log data to a
disk or RAM disk at high speed in real-time without any additional software.

Trigger Performance

Tasks that involve triggers are sensitive to their input data streams. A WAITWAITWAITWAIT task, for example, throws out data until a
trigger occurs; then it transfers a block of data from one pipe to another. Discarding blocks of unwanted data is very
efficient, but identifying and moving data blocks when a trigger is asserted takes more computing overhead than an
ordinary data transfer. If trigger events are frequent, it is more efficient to have a processing task that analyzes a
continuous data stream, rather than using a trigger. On the other hand, if trigger events occur rarely (for example,
less than once per 100 samples), triggering is typically more efficient.

84 Chapter 12 Optimizing Processor Performance

High-Speed Triggering

A Data Acquisition Processor allows hardware triggering up to the maximum input sampling rate. By using a COUNTCOUNTCOUNTCOUNT
command with hardware triggering, it is possible to acquire large blocks of data without risk of overflow.

Software triggering is more flexible than hardware triggering and also allows capture of pretrigger data. Software
triggering can perform up to the maximum speed of the Data Acquisition Processor, but limits the amount of CPU
capacity available for other processing. When using software triggering at high data rates, the task that asserts the
trigger may need to process only a part of the raw data, and can skip unnecessary processing to save time. This is
true even though the WAITWAITWAITWAIT command can wait for data at the maximum speed of the Data Acquisition Processor.

The following command list illustrates a typical high-speed triggering application. In this application, the Data
Acquisition Processor samples one pin at 200,000 samples/second, and transfers a block of data, including pretrigger
data, each time the input signal passes through a specified region. The WAITWAITWAITWAIT task can process data at the maximum
speed of the Data Acquisition Processor, but the LIMITLIMITLIMITLIMIT task is limited to a slower rate. To increase the performance
of the Data Acquisition Processor, the input signal is read into six input channel pipes. The LIMITLIMITLIMITLIMIT task is configured
to read just one of the input channel pipes, so it processes one sixth of the raw data. The WAITWAITWAITWAIT reads data from a list
of input channel pipes, so it processes all the raw data.

TRIGGER T
PIPE P1
IDEF A 6
 SET IPIPE0 D0
 SET IPIPE1 D0
 SET IPIPE2 D0
 SET IPIPE3 D0
 SET IPIPE4 D0
 SET IPIPE5 D0
 TIME 5
 END
PDEF B
 LIMIT (IPIPE0,INSIDE,100,200,T)
 WAIT (IPIPE(0,1,2,3,4,5),T,100,100,P1)
 END

Note: In this example, the trigger event must span at least six sample times to guarantee recognition.

Benchmarking an Application

For fast applications, it is useful to perform a benchmark to find how much processing capability is available.
Benchmarks can determine if there is a comfortable overhead of processing power for the application, or if the input
rate is too high for the processing being done. Benchmarks also aid in determining how to optimize an application.

Chapter 13 Prioritized Multitasking 85

13. Prioritized Multitasking

The DAPL operating system provides some options to control task execution priority. Tasks at higher priority can
respond quickly to isolated events in real time. Tasks for bulk data processing, not constrained by real-time
deadlines, can operate at a lower priority without interfering with the higher-priority tasks.

Priority Levels in DAPL

The DAPL system supports multiple levels of task priority, with multiple tasks at each priority level. Task
scheduling is easier theoretically when each task has its own unique priority level, but the DAPL system must also
ensure that data streams flow uniformly and efficiently. Usually, this is easier when tasks can have approximately
equal opportunities to execute.

As an example of prioritized processing, consider an application that controls tool contact pressure for a drilling
machine tool. To maintain the correct cutting pressure, a strain-sensing device monitors the contact pressure and
controls the tool position. The desired cutting pressure is different for a freshly sharpened cutting tool or a more
worn one. To determine whether the cutter is sharp or dull, vibrations are monitored with a microphone and an FFT
spectrum analyzes frequencies that correlate with dull tools. While tool pressure corrections need to be regular and
fast, the FFT data analysis collects large blocks and posts results slowly. You don’t want the low-speed analysis to
consume all of the processor capacity and interfere with high-speed control response.

Assigning task priorities reduces exposure to delays by reducing the number of tasks that can cause delays. With
priorities in effect, tasks at higher priority levels proceed as if the lower priority processing didn’t exist. Response
delays include:

• scheduling delays caused by any higher priority tasks (if any),

• scheduling delays for other tasks at the same priority,

• a small delay to account for everything else.

86 Chapter 13 Prioritized Multitasking

DAPL Tasking States

Before discussing priorities further, it is necessary to describe the states of tasks that are able or not able to run.

Every DAPL processing task exists in one of the following states.

• CREATED. The task has been defined in a processing configuration, but the configuration is not started.
The task has no system resources and no connections to other tasks.

• RUNNING. The task is started, has established connections to other tasks, and has allocated system
resources. It is available to be scheduled for execution.

• BLOCKED. The task would be in a RUNNING state, except a requested resource is not available; for
example, it needs data from its input stream. A BLOCKED task is not available to be scheduled for
execution.

• SLEEPING. This is very similar to BLOCKED except that the reason the task cannot be scheduled for
execution is not a resource conflict. The most common reason is awaiting a timeout interval.

• DEAD. The task has completed its processing and is no longer available for execution.

A RUNNING task is a candidate for execution, but only one task actually runs on the hardware processor at any one
instant. Selection of this task is the responsibility of the task scheduler.

Tasks enter the RUNNING state when their processing configuration is started. Tasks in the RUNNING state remain
schedulable until some action causes them to change to a BLOCKED, SLEEPING, or DEAD state. Some examples:

• The RUNNING task requests data from a data pipe and insufficient data are available to satisfy the request.

• The RUNNING task attempts to write data to a data pipe but insufficient capacity is available for the
receiving pipe to accept all of the data.

• The RUNNING task requests a timing interval.

Tasks that are BLOCKED become schedulable again when the resource conflict is resolved. Some examples:

• A task that became BLOCKED because it needed more data becomes a RUNNING task when the writer
task supplies the needed data.

• A task that became BLOCKED because a pipe could not accept more data becomes a RUNNING task
again when the data reader tasks process some of the data, making pipe capacity available.

Tasks that are SLEEPING become schedulable again when the timing interval ends.

Tasks that are DEAD can never be rescheduled. They revert to a CREATED state when the entire processing
configuration is stopped.

Chapter 13 Prioritized Multitasking 87

Priority Scheduling

The task scheduler selects tasks for execution from the list of available running tasks. The rules it applies for making
the selection are the scheduling strategy.

The Round Robin Strategy

If all processing tasks have the same priority — the default configuration when no priority is explicitly assigned —
the scheduling strategy is “round robin” with every task getting an opportunity to execute in turn. This strategy was
used in earlier versions of the DAPL operations system.

However, the DAPL system applies an additional heuristic to help optimize data flow. If a task in the round robin
sequence is BLOCKED so that it cannot execute, and if the DAPL system can identify the task responsible for the
resource conflict, the DAPL system can schedule that other task to execute in place of the BLOCKED task — at
least, up to the point that the resource conflict is resolved.

Scheduling Rules

When priorities are assigned, some tasks will run in preference to other tasks. The task scheduling rules for the
priority scheduling are:

1. To be schedulable for execution, a task must either be RUNNING, or BLOCKED by another known
RUNNING task that provides the resource needed by that BLOCKED task.

2. A task selected for execution must have the highest priority of all tasks that are schedulable. If multiple
tasks satisfy this condition, tasks are selected for execution from this group in a fixed “round robin”
sequence.

3. If the schedulable task selected for execution is RUNNING, it immediately becomes the currently
executing task.

4. If the schedulable task selected for execution is BLOCKED, the RUNNING task that blocks it can execute
in its place.

5. If an event or action causes one or more SLEEPING or BLOCKED tasks of higher priority to become
RUNNING tasks, the scheduling rules are re-evaluated and one of the higher priority tasks is selected for
execution.

6. If the currently executing task is running in place of another task, and resolves the resource conflict
between the two tasks, the current task is suspended and rule (5) above is evaluated so that the other task
may become the currently executing task.

Priority Inversions and Their Resolution

According to scheduling rule 4, it is possible that a lower-priority task can execute in place of a higher priority task
temporarily when there is a resource conflict. Suppose that this is not the case, and a high priority task becomes
BLOCKED awaiting data from a low priority task. Even if enough data become available for the low priority task to
continue, other intervening low or medium priority tasks could be scheduled first, causing a long delay.

88 Chapter 13 Prioritized Multitasking

A situation in which a high-priority task waits while various other tasks of lower priority execute is called a priority
inversion. Priority inversions can seriously degrade the response time of a high-priority task. Though priority
inversions can’t be avoided entirely, they should be resolved quickly. Executing tasks in place of other tasks is a
kind of priority inheritance scheme. The low priority tasks temporarily execute at higher priority, at least long
enough to resolve the resource conflict. At that point, the low priority task reverts to its usual priority and its usual
place in the low priority round-robin list, while the high priority task assumes a RUNNING state and is schedulable
at its priority.

Chapter 13 Prioritized Multitasking 89

Configuring Priorities

A priority is assigned to one or more tasks configured within a PDEFINEPDEFINEPDEFINEPDEFINE / ENDENDENDEND command group. Priorities range
from 1 (the lowest) to 4 (the highest). All commands in the group are assigned the same priority level, hence, tasks
that operate at different priorities will be configured in different PDEFINEPDEFINEPDEFINEPDEFINE / ENDENDENDEND groups. The priority is declared on
the PRIORITY command, which appears (if present) immediately after the PDEFINEPDEFINEPDEFINEPDEFINE command. If no PRIORITY
command is present, priority 2 is assumed as the default.

For example:

PDEFINE LOWGROUP
 PRIORITY 2
 … normal priority task definition commands here …
 END

PDEFINE HIGHGROUP
 PRIORITY 3
 … high priority task definition commands here …
 END

A STARTSTARTSTARTSTART command will start both of these processing groups, unless you specify a list of procedures that
deliberately omits one or the other. To avoid pipe access restrictions, you should start all procedures that exchange
data across priority levels in one start group; that is, use the same STARTSTARTSTARTSTART command.

90 Chapter 13 Prioritized Multitasking

Prioritized Processing Application

In this section, we will examine two prioritized configurations for the same control application, and contrast their
relative advantages and disadvantages.

In the example application, a sensor is controlled to multiple positions, and at each position data are captured.
Sensor data are captured rapidly and filtered to reduce noise. A PIDPIDPIDPID command drives the sensor positioning to arrive
at each sensing location quickly and hold that position accurately. Regular and fast PID updates are important for
accurate and stable settling, but initiation of the position changes is not time-critical because time must be allowed
anyway for the mechanical transient to settle. The position levels are sent to the PIDPIDPIDPID command at a slow rate, at
intervals derived from the sampling clock.

First Solution

We can observe that responding to the real-time feedback quickly involves three operations.

1. Delay high-priority processing until an input sample is reached when the PID control must be updated.

2. Compute an immediate control response in the PID task.

3. Send the control output to the analog output port using a DACOUT task.

We observe that these activities are all related to the high-speed, regular response that should not be delayed by
other processing, so we can package these three processing tasks at a higher priority level.

The feedback signal is oversampled, so we need to select the samples for the feedback control to use. However, we
also have the general restriction that all readers of the same pipe must be in processing procedures started at the
same time. After selecting the signals needed for high priority processing, the sensor data are sent down to the lower
priority processing through a separate data stream.

This must be done carefully, otherwise the DAPL system will spend most of its time spinning through a tight loop,
transferring samples one at a time to the lower level processing. That is why we should not use the regular SKIPSKIPSKIPSKIP
command. Instead, we can use a customized high-priority processing command. Let’s call this command SKIPN.
SKIPN will take care of all data selection and copying actions, remaining BLOCKED most of the time until a
configurable group of N samples becomes available in each data channel. When the data block is ready, the SKIPN
task resumes its RUNNING state. It copies a value of the feedback data signal for high priority processing, and
copies the bulk of the sensor data for low priority processing.

First, configure the data acquisition for sampling the position feedback and sensor signals. The sensor channel and
the PID feedback channel are each captured at 50000 samples per second. For brevity of presentation, the
declarations of pipes, variables and named constants are skipped. Here is the input configuration:

IDEFINE AllChannels
 CHANNELS 2
 SET IP0 S0 // pid feedback channel
 SET IP1 S1 // sensor input channel
 TIME 10 // 2 channels each at 50 kHz rate
END

Chapter 13 Prioritized Multitasking 91

The PID loop only requires updates at a rate of 500 updates per second, so the SKIPN task will be configured to
accept 100 samples from each channel. The high priority processing is unblocked as each data block of 200 samples
arrives, with 100 feedback samples and 100 sensor samples. One feedback value propagates through the PIDPIDPIDPID
command and out to the DACOUT task.

PDEFINE HiPriority
 PRIORITY 3
 SKIPN(IP(0,1), 2, 100, PIDfb, IPecho)
 PID(PIDset, PIDfb, Pgain, Igain, Dgain, 500.0, PIDout)
 DACOUT(PIDout, Dac0)
END

Now define the low-priority processing. First, define a sequence of stepped levels for the PIDPIDPIDPID command to track.

VECTOR vPIDlevels WORD = (1000, 2000, 3000, 4000, 5000, 6000,
 7000, 8000, 9000, 10000, 11000, 12000, 13000, 14000, 15000)

PDEFINE LoPriority
…

The commands in this lower priority processing group will generate the stepped PIDPIDPIDPID command sequence. Each level
is held for 5000 sensor samples (1/10 second). We can obtain an arbitrary data stream at this rate using an ordinary
SKIPSKIPSKIPSKIP command to count and select sensor samples.

 SKIP(IPecho, 0, 1, 4999, IPslow)

We don’t care about the values selected, so we will use a DAPL expression to replace them with PIDPIDPIDPID command
setpoint levels. Delays of a few milliseconds don’t matter.

 COPYVEC(vPIDlevels, PIDlevels)
 PIDset = (0*Ipslow) + PIDlevels

These PID level commands are sent to the high priority processing. The PID task adjusts its target level whenever a
new value is received, never missing an update, even if the new level is a little slow in arriving. In the meantime, the
low-priority processing uses a FIRLOWPASSFIRLOWPASSFIRLOWPASSFIRLOWPASS task to smooth the sensor data, decimate by a factor of 5 to reduce the
sample rate to 10000 samples per second, and stream the results to the host PC.

 FIRLOWPASS(IPecho, 5, $BinOut)
END

There is nothing wrong with this solution for this application. It is successful because high priority results propagate
one at a time. That means either there is one high priority task able to run, or no high priority tasks can run, and in
either case, scheduling is fast and easy. This strategy works in general when processing is fast, and data
dependencies are simple. As long as all of the tasks get a fair opportunity to execute, which they do, one pass will
finish them all.

Second Solution

In more complex networks of related tasks, high priority processes might take multiple scheduling quanta to
complete. A long dependency chain of related tasks possibly could delay other tasks by the length of the dependency
chain times the size of the time quantum.

92 Chapter 13 Prioritized Multitasking

In the second solution, as many interdependent tasks as possible are placed into the low priority processing.
Configure only DACOUT, the final task at the end of the dependency chain, for high priority. When the lower priority
tasks are driving the data to DACOUT, they run in its place at high priority to resolve its BLOCKING condition, so
the effect is roughly the same as if they also had high priority.

PDEFINE HiPriority
 PRIORITY 3
 DACOUT(PIDout, Dac0)
END

The DACOUT task needs to get data from the PID control. Because processing of the input channels is in the low-
priority configuration, an ordinary SKIPSKIPSKIPSKIP command can select the data for the PIDPIDPIDPID command. The SKIP task
alternately takes one feedback sample then is BLOCKED as it ignores the next 99 samples. Without new data, the
SKIP task waits, PID task waits, and the DACOUT task waits.

PDEFINE LoPriority
 SKIP(IPipe0, 0, 1, 99, PIDfb)
 PID(PIDset, PIDfb, Pgain, Igain, Dgain, 500.0, PIDout)

The slow 1/10 second intervals for the stepped PIDPIDPIDPID command sequence is produced the same as before, but input
channel data can be used directly to establish the timing.

 COPYVEC(vPIDlevels, PIDlevels)
 SKIP(Ipipe0, 0, 1, 4999, IPslow)
 PIDset = (0*Ipslow) + PIDlevels

Filtering and decimation of the sensor data can also read input channel data directly.

 FIRLOWPASS(IPipe1, 5, $BinOut)
END

Comparing the Two Configurations

For this application, the performance difference is negligible for the two solutions. The tasks execute quickly, so it
doesn’t matter much whether they are actually configured in the high priority task list or just inherit high execution
priority. More complex configurations could show many subtle differences in behavior, related to the number of task
switching operations, the order of task scheduling, and the efficiency with which accumulations of data are
processed.

The second configuration has some small advantages. A custom processing command is not needed to manage
processing time at the higher priority. Processing can use the input channel data directly without additional transfer
operations. In general, with fewer tasks in the high priority task, there are fewer ways for high priority processes to
consume all of the computing power. Keeping a minimum number of tasks in the high priority group makes it easy
to bound the worst-case response time: it equals the number of high priority tasks times the scheduling time
quantum. The main disadvantage is that the scheduling is a little harder to analyze, because high priority task
execution might occur in tasks that are not specifically assigned to the high priority group.

Chapter 13 Prioritized Multitasking 93

Rescuer Scheduling

Prioritized task configurations are tricky to set up. Configuration or design errors can be particularly perplexing if
they result in high priority tasks that consume all of the processing time, so that other tasks never run. Everything
looks fine and seems to run fine, except that nothing happens. In fact, a runaway high priority task can preempt
command and information channel management tasks, so that you can’t obtain any information about what is
happening, and can’t send system commands to do anything about it — other than reload the DAPL system in the
host system control panel application.

To assist diagnosing and recovering from these problems, there is a special rescue task option. A rescue task is a
special task created by the DAPL system that treats all other tasks in the system as if they provided a resource. The
rescue task doesn’t do anything itself, but because of the artificial resource conflict it temporarily elevates the task
priority of every task of priority 2 or higher, in sequence. If it turns out that the task is already running fine without
intervention, the rescue task can skip over it and look for other tasks that need help to run. The effect is as if there
existed a large round-robin scheduling list giving all tasks a chance to execute when they can’t otherwise, partially
overriding normal priority protocols.

To control the rescuer task, you need to use three special variants of the OPTIONSOPTIONSOPTIONSOPTIONS command.

OPTIONS RESCUE=ON
OPTIONS RESCUE=OFF

The default is ON. Setting RESCUE=OFF can give maximum multitasking efficiency and minimum response
latencies, but you should not do this until you have confidence that your system always operates correctly this way.

The rescuer task is scheduled to run once per each rescue time interval.

OPTIONS RINTERVAL=nnnnn

Specify the time interval between opportunities for the rescuer task to execute, where the interval length nnnnn is
expressed in microseconds.

When the rescuer task executes, it is allowed a limited processing time. Specify this time interval as the rescuer time
quantum.

OPTIONS RQUANTUM=nnnnn

The DAPL system establishes default values that will have only a very tiny effect on net real-time performance.

With the rescue task active, you can tell whether tasks produce numerically correct results, verify that data go to the
right places, receive error messages, and so forth, even in the presence of configuration problems that cause havoc
with process scheduling. The rescue processing adds a slight amount of extra system overhead, and a small
additional scheduling uncertainty. It also can create new opportunities for priority inversion. But if your application
meets its response and processing requirements, there is no reason to turn off the rescue task. In a well-configured
system, where all of the tasks run normally and the rescuer needs to take no action, the only cost is a small delay for
a safety check. Thus, the cost is small, while there are some definite risks for not using it.

94 Chapter 13 Prioritized Multitasking

Using Priorities Effectively

Priorities mean that some tasks are allowed to run in preference to other tasks. That has advantages in that the most
urgent things are done immediately, but it can cause complications when tasks at high priority engage in
unproductive activity, displacing lower priority processing that could produce useful results. Here are some general
rules for getting the best results from tasking priorities.

Run tasks that crunch through large amounts of data at a lower priority.

Run tasks that process small amounts of data to produce responses quickly at a higher priority.

The application example, with a PID loop regulating the position of a sensor while a FIRLOWPASS task cleans a
separate sensor signal, is a good example. Configure the tasks with regular but relatively infrequent control updates
to operate at priority 3, either by configuring them there or configuring them so that priority 2 or priority 1 tasks
provide the data at boosted priority. Tasks that propagate single values with minimum real-time delay are good
candidates for high priority processing. Any CPU capacity not needed for fast response becomes available for other
processing.

Drive high priority tasks from low priority tasks for faster response.

There is less delay when driving a high priority task from low priority computation, than from driving a low priority
task from a high priority computation. When a high priority task supplies data to a low priority task, the low priority
task might not execute immediately. The only time the lower priority task is guaranteed to respond immediately is
when its input pipe is already full — priority inheritance will then try to schedule it to facilitate the higher priority
processing. But if the pipe is full, that means there was already a long delay to fill it. Furthermore, when a low
priority task runs, it might release some other resource conflict, allowing an intervening task to be scheduled, further
delaying its response.

On the other hand, when a high priority task receives data from a low priority task, it will respond to all data it
receives and ask for more data before any other lower priority tasks can execute. That means the lower priority task
also waits for its data at the higher priority. Other tasks at normal priority will not delay it when new data arrive.

Be extra careful with polling loops at high priority.

A polling loop is a program loop that checks a sequence of conditions, performing an action if the corresponding
condition is satisfied, or going to the next test in the sequence otherwise. They are most often found in custom-
developed dispatch commands that coordinate complex processes. Some coding examples from commands built
using the Developer’s Toolkit for DAPL are shown.

There is nothing fundamentally wrong with polling, as long as the polling is not allowed to deny lower priority tasks
any opportunity to execute. For example, consider the following code sequence:

// Dispatch loop with polling
while (FOREVER)
 {
 if (command_pipe_nonempty())
 ProcessCommandPipe();
 if (status_bit_changed())

Chapter 13 Prioritized Multitasking 95

 UpdateLevels();
 check_alarms();
 }

If this processing is placed in a low priority command, response might be too irregular because all of the other low
priority tasks could interfere. But if this processing is located in a high priority command, this loop will
continuously test the command pipe, status bits, and alarm levels, and not release the processor to lower level
processing, even if nothing is happening.

It might seem at first that the following change would solve the problem and allow other tasks to execute.

// Dispatch loop with voluntary task switching
while (FOREVER)
 {
 if (command_pipe_nonempty())
 ProcessCommandPipe();
 if (status_bit_changed())
 UpdateLevels();
 check_alarms();
 task_switch();
 }

This helps a little because it allows other tasks at the same priority to execute sooner, but lower priority tasks still
cannot execute.

In the following sequence, the dispatch loop continues to process until it is certain that all changes are detected and
processed. Then, a time delay is allowed before checking again. During that delay, other tasks can run at lower
priority.

// Dispatch loop
while (FOREVER)
 {
 if (command_pipe_nonempty())
 ProcessCommandPipe();
 else if (status_bit_changed())
 UpdateLevels();
 else if (check_alarms())
 /* NIL */;
 else task_pause(10);
 }

In this modified loop, if any change condition is detected, the entire checking loop is repeated. But if nothing has
changed, a 10 millisecond delay is enforced. During that time, lower priority data processing can execute.

Avoid high priority tasks that depend on low-priority polling.

Ordinarily, a polling task running at low priority can permit other tasks at low priority to execute in round-robin
sequence, for example, code in a custom processing command might include the following:

// Low priority polling loop
while (FOREVER)

96 Chapter 13 Prioritized Multitasking

 {
 // Perform necessary actions
 . . .
 // Then allow other tasks to run
 task_switch();
 }

But if one of the actions provides data to a high priority task, the high priority task might be BLOCKED waiting for
this data, causing the low priority polling task to execute at a boosted priority. The task_switch() function then
has no effect, because control returns immediately to the polling task, while the other low priority tasks do not get a
chance to execute.

Use priorities to regularize output timing at rates different than hardware-controlled output
procedures.

As long as you don’t overload it with data, a high priority task can generate regular output updates, somewhat like
hardware-clocked outputs. It just isn’t as fast or as precise as the hardware-controlled updates, due to uncertain task
scheduling delays.

A few supplied commands such as DIGITALOUT and DACOUT provide options to support cyclic processing with
timing intervals. Custom processing commands can do the same things. The idea is to prepare for each output but
defer it until a regular clock interval expires. During the intervening time, the high priority task will SLEEP. An
advantage of this scheme is that there is no harm done if the task runs out of data. Updates will not occur until the
data stream resumes. In contrast, a hardware-clocked output sequence is very intolerant of missing data, and will
cause an UNDERFLOW condition that stops the output updating.

Avoid data transfers to the host at high priority.

Don’t confuse priority with importance. When you operate host system transfers from high priority tasks, all of the
delays of the host operating system and bus management will be reflected as delays in all high priority processing. If
you must transfer data to the host from a high priority process, consider transferring the data to a low priority task
first. In terms of DAPL processing, the low priority tasks might be slow, but in terms of host system responses, the
delays will be minimal, and they will not damage critical real-time response.

Don’t try to do too much.

Though tasks scheduled at a single priority level have only weak theoretical guarantees of response speed, it often
turns out that for a given actual system, there is no way for the configuration to respond slowly. What a round robin
scheduling strategy lacks in elegance it can sometimes make up for with simple consistency. It is worth testing a
configuration to establish a performance baseline before worrying about the priority levels. If you consistently get
the response times you need, without any adjustment of priorities, you should keep your application simple.

Chapter 14 Overflow and Underflow 97

14. Overflow and Underflow

Overflow and underflow conditions result when data rates are inconsistent with available data storage. Overflow
occurs when sampling is faster than data can be processed and transferred, so that eventually there is no more
available memory to store new values. Underflow occurs when output updates deliver data to output ports faster
than new data are provided, so that eventually no data are available at the moment when an update cycle is required.
Both overflow and underflow are associated with hardware activity that is unable to continue. When underflow or
overflow conditions cause the process to stop, the devices are not damaged, and no previous sample values are lost
or corrupted. Other processing will continue normally.

If an overflow occurs, processing tasks eventually stop getting new data and cannot continue processing. If an
underflow occurs, output processing stops accepting new data, and any new data can fill the transfer pipe so that no
more data are accepted. Even though most processing continues normally, an overflow condition or an underflow
condition usually leads to an inactive state where all possible processing is done.

Countermeasures include:

• limiting the number of accumulated samples using a COUNTCOUNTCOUNTCOUNT option

• reducing the hardware rates specified on the TIMETIMETIMETIME command

• intermittent processing using a “burst mode” configuration.

Overflow and underflow conditions are not always errors, and can be applied intentionally. For example, burst mode
output configurations can accept a block of output data for a complicated output sequence, and after all updates are
delivered, output activity stops to await the arrival of a new data burst.

98 Chapter 14 Overflow and Underflow

Overflow Messages

The Data Acquisition Processor diagnosis of overflow conditions depends on the OVERFLOWQ option. If this option
is set to OFF, the following overflow message is sent to the host via the $SysOut pipe:

*** Warning 1530: channel pipe overflow at sample #xxxxx

The #xxxxx field of the message gives the sample count at which overflow occurred.

If the OVERFLOWQ option is set to ON, the overflow message is suppressed. At any time, the host can send the
command:

DISPLAY OVERFLOWQ

The Data Acquisition Processor responds by sending a line containing a single 32-bit integer text via the $SysOut
pipe. If this number is zero, overflow did not occur. Otherwise, the number indicates the sample number at which
overflow occurred.

Example: if a configuration has six-channel input pipe, and overflow occurs after sampling 100,000 times for each
channel, the overflow sample number is 600,000.

Chapter 14 Overflow and Underflow 99

Preventing Overflow

Overflows are often related to processing bottlenecks. You can check whether data backlogs are occurring in
transfer pipes by sampling until just before overflow occurs, and issuing a DISPLAY PIPESDISPLAY PIPESDISPLAY PIPESDISPLAY PIPES command. This will
display all defined pipes and the number of data values in each pipe. Check for pipes that contain extremely large
amounts of data. Another useful tool is the STATISTICS PIPESSTATISTICS PIPESSTATISTICS PIPESSTATISTICS PIPES command. It can tell you which pipes reached their
capacity, and which tasks are consuming most of the processing time. If a data backlog is present, it is probably due
to processing delays at the reader task.

If no user-defined pipe contains excessive data, a backlog of unprocessed data is accumulating in the input channel
pipes. Remedies include reducing the sampling rate, using SKIPSKIPSKIPSKIP to reduce the amount of data processed, using a
hardware or software trigger to extract relevant data, or using more efficient processing commands.

WARNING: Hardware sampling in general is faster than the processing that buffers and transfers data across the
host bus. Applications that attempt to capture data at maximum Data Acquisition Processor rates and transfer all of
that data to the host system should expect overflow problems.

The COUNTCOUNTCOUNTCOUNT command can prevent overflow by specifying the number of values to be sampled. Input sampling stops
when the sample count is satisfied. The COUNCOUNCOUNCOUNTTTT value can be larger that available memory if processing is expected
to remove and process part of the data before new samples arrive, but overflow can still occur if the processing is
not fast enough. Applications trying to maximize the amount of data capture before overflow should test their
configurations carefully to balance between sampling and processing rates.

In rare cases, channel pipes that have no tasks reading from them can contribute to channel pipe overflow. Data in
these unused channel pipes are temporarily stored in memory. The data from unused channel pipes are discarded as
data from used channel pipes are read. If processing is delayed, unneeded values use up part of the available storage
capacity.

100 Chapter 14 Overflow and Underflow

Underflow Messages

When output procedure updates occur faster than the Data Acquisition Processor can place data into output channel
pipes, channel pipe underflow eventually must occur. When underflow occurs, output updating stops.

The Data Acquisition Processor diagnosis of underflow depends on the UNDERFLOWQ option. If this option is set to
OFF, the following message is sent to the host via the $SysOut pipe:

*** Warning 1531: channel pipe underflow at sample #xxxxx

The #xxxxx field of the message gives the update count at which underflow occurred.

If the UNDERFLOWQ option is set to ON, the underflow message is suppressed. At any time, the host can send the
command:

DISPLAY UNDERFLOWQ

The Data Acquisition Processor responds by sending a line containing a single 32-bit integer text via the $SysOut
pipe. If this number is zero, underflow did not occur. Otherwise, the number indicates the update number at which
underflow occurred.

Example: if an output configuration has two output channels, and underflow occurs after updating each channel
pipe 100,000 times, the underflow update count is 200,000.

Chapter 14 Overflow and Underflow 101

Preventing Underflow

If output channel pipe data are repetitive, a cyclical output procedure should be used. Cyclical output procedures are
configured using the CYCLECYCLECYCLECYCLE command. Cyclical output procedures never underflow, even at the highest update rate
of the Data Acquisition Processor.

The update rate of a noncyclical output procedure is limited by the rate at which values are placed into output
channel pipes. This depends on the speed of tasks used to send data to the output channel pipes.

As output processing starts, there is a race. Who will be first, the task that produces the data, or the output procedure
that sends it? If the output processing “won” this race it would immediately underflow and terminate prematurely. If
this problem were ignored, the result would be highly unreliable startup performance. To avoid this problem, the
DAPL system enforces an “output wait.” More precisely, it requires a certain number of output values to be in the
buffer and ready before output processing is fully started. An output procedure’s initial startup delay is defined using
the OUTPUTWAITOUTPUTWAITOUTPUTWAITOUTPUTWAIT command. In some instances, increasing an output procedure’s initial startup delay allows faster
update rates.

Other options are available for avoiding underflow. The COUNTCOUNTCOUNTCOUNT command can force an output procedure to stop
output updating after a specified number of updates before an underflow condition occurs. The UPDATE BURST
option of an output procedure lets the underflow happen, and then resumes output updating later when more data are
available to satisfy the OUTPUTWAITOUTPUTWAITOUTPUTWAITOUTPUTWAIT condition again.

Chapter 15 Low Latency Operation 103

15. Low Latency Operation

A Data Acquisition Processor acquires data and processes data concurrently. Because many tasks share one
processor, there is a delay from the time an input is sampled until a task can act upon the sample data. This delay is
called latency.

There is a tradeoff between throughput efficiency and latency. To optimize the processing of large amounts of data,
you want to dedicate as much CPU power as possible to computation, and as little as possible to other system
activities such as task scheduling. Delayed processing is acceptable if it produces better efficiency. In contrast, for
better response to real-time events, tasks that must meet response time constraints should execute before other tasks
that do not. When they are allowed to run, tasks should do so only for short time intervals to avoid delaying other
tasks. Switching tasks more frequently increases system overhead, and makes processing less efficient, reducing the
volume of data that can be processed as a tradeoff for reducing the delays.

The two goals of high throughput and fast response are clearly in conflict. Each application should evaluate whether
its goal is fast bulk processing or minimal latency, and select options accordingly. For example, most disk logging
applications capture and transfer data at very high speeds, but they are not sensitive to relatively long delays. In
contrast, delays of a few milliseconds in a closed loop control application could cause the controlled system to
oscillate in a chaotic fashion.

104 Chapter 15 Low Latency Operation

Buffering Control

When optimizing for throughput, each processing task will maintain possession of the CPU for longer periods of
time. Because each task runs more efficiently but less often, data will tend to collect into larger blocks. Larger
buffers can also be used for moving the data. On the other hand, when optimizing for fast response, each processing
task will maintain possession of the CPU for shorter periods of time, so that fewer samples accumulate. Large
buffers only make memory management more complicated. The simpler the buffering, the faster the response.

Ordinarily, pipes are DYNAMIC, which means that memory will be allocated for new data, and released after the data
have been taken. Tasks responding to events in real time typically produce and consume limited amounts of data,
often single items. There is no point in continually allocating and releasing memory for just a single item, so pipe
operation can be made more efficient by declaring the pipe memory STATIC, and configuring an appropriately
small MAXSIZE property.

Custom processing commands can enforce their own timing strategies. While other processing might try to improve
efficiency by bunching samples into larger blocks, thus increasing processing delays, the custom processing logic
can deliver a few or just one result per processing cycle, and then release control of the CPU to allow other tasks to
respond.

Chapter 15 Low Latency Operation 105

Task Timing Control

The QUANTUM options affect how long and how often a task can run. Shorter time intervals mean less processing
efficiency, but shorter delays. DAPL allows each task the same time quantum of CPU time at each opportunity to
run. In most time-critical applications, this time interval is small, but sufficient to generate a required response to a
real-time event. A task that does not need the entire time quantum can release unused CPU capacity for other tasks
to use, without penalty.

The quantum can be set to any desired number between 100 µs and 5000 µs. Most real-time applications will set this
number small so that no single task can delay the response time too much. This strategy is not appropriate in all
cases, however. For example, suppose that a real-time system has tasks to detect sporadic events, select data
associated with those events, perform a small FFT transform on the collected data, and generate a real-time response
on the basis of each transform result. Of those four tasks, only the FFT computation takes significant time. The other
tasks will complete their processing and release the CPU quickly regardless of the QUANTUM option. The transform
doesn’t delay anything when it has nothing to do; but when it has data, it produces its results the fastest if there are
no tasking interruptions. For this case, the QUANTUM option can be lengthened to allow completion of the transform
without interruption by task switching.

The following option would allow higher data volumes and shorter sampling intervals at the expense of larger
buffering delays.

OPTIONS QUANTUM=2000

This is the default quantum value, generally useful for acquisition applications with moderate processing
requirements, aimed primarily at efficient throughput. The following option would provide rapid task switching for
shorter real-time delays at the expense of data throughput capacity.

OPTIONS QUANTUM=200

106 Chapter 15 Low Latency Operation

Evaluating Task Latency

The STATISTICSSTATISTICSSTATISTICSSTATISTICS command is useful for evaluating expected task latency. This command will show all active tasks
in the system, the amount of time they consume, and the worst case delay (in terms of backlogged samples)
experienced by each task.

For systems with so-called “soft” real time requirements, an absolute bound is not very useful, because actual
system latency rarely approaches the worst possible theoretical case. The STATISTICSSTATISTICSSTATISTICSSTATISTICS command will report the
CPU utilization of each active task, and the latency of the entire scheduling sequence. This information can then be
used to compare the expected response latency with the observed and theoretical worst cases.

Low Latency Option

Some DAPL commands have special logic that detects the BUFFERING=OFFBUFFERING=OFFBUFFERING=OFFBUFFERING=OFF option and selects an appropriate
algorithm specialized for that case. This only advises the commands about how to operate: there is no longer any
direct effect on the operating mode of the pipes. The AVERAGEAVERAGEAVERAGEAVERAGE,,,, and SKIPSKIPSKIPSKIP,,,, and DAPL expression commands are
examples of commands that are aware of the BUFFERING=OFFBUFFERING=OFFBUFFERING=OFFBUFFERING=OFF option.

Chapter 15 Low Latency Operation 107

Using Custom Modules to Reduce Latency

Some latency is inherent in any multitasking operating system. A task can only respond to an input when the
processor is executing the task. There is system overhead in recognizing that an event has affected the scheduling
status, and switching appropriately to a new task. One way to minimize latency is to reduce the number of tasks
active at any time. In critical applications, all of the required processing can be implemented in one custom task.
This can mean some complicated programming, but because the operating system’s background tasks take little
processor time, the custom command will be running most of the time. This approach yields the lowest possible
latencies.

If you cannot reduce the processing to one task, perhaps you can partition the processing so that the critical part
executes as the only task running at a higher priority. This is almost as good as a single-task solution.

Chapter 16 DAPL Software Triggering 109

16. DAPL Software Triggering

Software triggering is a unique capability of the DAPL operating system. Software triggering allows applications to
select data blocks of interest, ignoring other data. In many applications, software triggering can replace complicated
electronic triggering circuits. Software triggering can do some things easily that are difficult or impossible to do any
other way.

Consider for example a protective relaying application. Opening a circuit breaker to drop a large three-phase motor
load can be very expensive, but failing to do so could damage the motor, which is even worse! Phase, timing and
sensitivity settings on the protective relay are important, but optimizing these settings requires measurement of
actual operating conditions. A Data Acquisition Processor can collect data each time a system disturbance occurs, so
that later analysis can verify the proper balance between safety and economical operation. However, some of the
data of interest occur before relay operation. In other words, by the time a hardware logic signal is available to
initiate data collection, it is already too late to capture some of the required measurements.

Software triggering solves this problem by monitoring the data continuously. If nothing happens, and the relay does
not activate, extraneous measurements are discarded automatically. However, if the relay does operate, the required
measurements are extracted from memory.

The continuous data capture and data management cause some additional processing overhead, but the DAPL
operating system is optimized to do these operations with extreme efficiency. Besides, in most applications, there is
plenty of capacity in the Data Acquisition Processor’s onboard CPU. Why not use it?

Software triggering determines when to trigger by analyzing a data signal. Powerful analysis techniques can be
applied, including digital filtering, operating state logic, and region-of-interest selection. The logic can include
information from more than one source. Time-sequence analysis can also be performed, to select only a few relevant
events for further analysis. Operations such as these are difficult or impossible to do with hardware triggering
circuits.

110 Chapter 16 DAPL Software Triggering

Defining Software Triggers

To use software triggers, three DAPL elements work in combination: a software trigger element to coordinate
triggering action, a processing task that generates trigger events, and a processing task that responds to trigger
events.

The TRIGGERSTRIGGERSTRIGGERSTRIGGERS command defines a software trigger element. For example, the following command might be used to
define one trigger that responds to pressure measurements and another trigger that responds to temperature
measurements:

TRIGGERS TPRESS, TTEMP

After a software trigger is defined, it is available to processing tasks.

Each DAPL processing configuration that uses software triggering has a processing task that generates triggering
events and one or more tasks that respond to these events. Most applications use commands built into the DAPL
operating system to generate trigger events. Specialized applications can use custom modules for generating trigger
events, responding to trigger events, or both.

The DAPL operating system provides these commands that generate trigger events:

• DLIMITDLIMITDLIMITDLIMIT
• LIMITLIMITLIMITLIMIT
• LOGILOGILOGILOGICCCC
• PCASSERTPCASSERTPCASSERTPCASSERT
• TGENTGENTGENTGEN
• TOGGLETOGGLETOGGLETOGGLE

The DAPL operating system provides these commands that respond to software trigger events:

• FREQUENCYFREQUENCYFREQUENCYFREQUENCY
• TSTAMPTSTAMPTSTAMPTSTAMP
• WAITWAITWAITWAIT
• TOGGWTTOGGWTTOGGWTTOGGWT

There are other tasks that convert one or more streams of trigger events into a new, modified stream. The DAPL
operating system provides the following:

• NTHNTHNTHNTH
• TANDTANDTANDTAND
• TORTORTORTOR
• TRIGSCALETRIGSCALETRIGSCALETRIGSCALE
• TCOLLATETCOLLATETCOLLATETCOLLATE

Three special commands coordinate software triggering applications.

• TRIGSENDTRIGSENDTRIGSENDTRIGSEND
• TRIGRECVTRIGRECVTRIGRECVTRIGRECV

Chapter 16 DAPL Software Triggering 111

• TRIGARMTRIGARMTRIGARMTRIGARM

112 Chapter 16 DAPL Software Triggering

Applying Software Triggers

Most applications use software triggering for selecting blocks of data. This is illustrated in the following
continuation of the protective relaying example.

Suppose that voltages are monitored on three power phases at 60 Hz. The protective relay has two signals that can
be monitored. A high speed ‘pickup’ signal reports when the relay detection circuits are active. A delayed circuit
breaker control signal activated by the relay causes a power circuit breaker to operate. The DAPL input sampling
configuration to monitor these five signals might look like the following:

IDEFINE voltages 5
 SET IP0 s0 // phase1
 SET IP1 s1 // phase2
 SET IP2 s2 // phase3
 SET IP3 s3 // breaker activation signal
 SET IP4 s4 // relay pickup signal
 TIME 16.75 // about 200 samples / 60 Hz cycle
END

The following commands define a trigger and begin the processing configuration that will detect trigger events. The
relay pickup and circuit breaker control voltages are measured on a 0 to 5 volt scale, which is digitized in the range 0
to 32767. Pickup is indicated by a voltage reading of 3.0 volts (digitized as 19660) or more, and when this occurs, a
trigger event is generated. Subsequent trigger events are allowed after the control voltage reading drops below 1.0
volt (digitized as 6553):

TRIGGERS Tbreak

PDEFINE capture
LIMIT(IP4, INSIDE,19660,32767, Tbreak, \
 INSIDE,6553,32767)
...

Capturing voltage and breaker control data starts two power cycles before the relay pickup event. Assume that relay
action takes up to five power cycles. At that point, circuit breaker operation begins. Circuit breaker action takes
three more power cycles. Following breaker operation, collect two more power cycles of data for completeness. The
total is twelve cycles of data to be recorded on four channels, two cycles before, and ten cycles after relay pickup.

For each event and each phase, 200 samples per cycle are recorded. That means, 1600 samples are retained before
the relay pickup event, and 8000 samples after. The following commands continue the processing configuration
definition. The WAITWAITWAITWAIT command retains the data associated with each event, transferring the data to the PC for
storage on a disk drive:

WAIT (IP(0,1,2,3), Tbreak, 1600, 8000, $BinOut)
END

How Software Triggering Works

A task that generates trigger events is associated with a data source, usually a stream of data in a pipe. When these
data are captured at uniform sampling intervals, as in the case of input channels, there is a direct correspondence

Chapter 16 DAPL Software Triggering 113

between the arrival of samples and the passage of time. Numbers representing the positions of data in a data stream
are therefore called timestamps.

As data samples arrive, the trigger-generating task counts them. When a sample satisfies the triggering conditions,
the sample number for that sample is placed into the trigger. Think of the trigger as a kind of pipe, except that it
contains timestamp information instead of sampled data.

Trigger-reading tasks are also associated with a data stream, which may be a different data stream than the one that
the trigger writer scans. Samples are counted there as well. When the trigger-reading task receives an event
timestamp from the trigger pipe, it looks for data at that position in its data stream.

114 Chapter 16 DAPL Software Triggering

Equalizing Data Rates

Samples scanned by the trigger reader and writer must appear at the same data rate. The most common reasons for
different data rates are:

• data processing reduces the volume of data. For example, an AVERAGEAVERAGEAVERAGEAVERAGE command that averages input data in

groups of ten also reduces the data rate by a factor of ten.
• multiple data channels. For the protective relaying example, one data channel is scanned for triggering

conditions, but data are taken from four channels. This multiplies the data amount by a factor of four.

If the data rates do not match, the timestamps for the two streams do not correspond, and the software triggering will
produce meaningless results.

One way to avoid data rate problems is to avoid commands that affect data rates. The AVERAGEAVERAGEAVERAGEAVERAGE command changes
the data rate because it produces one output value for each block of values it reads, but RAVERAGERAVERAGERAVERAGERAVERAGE produces one
output result for each input value, leaving the data rate unchanged.

This approach has drawbacks, however. Performing too many computations on a high-rate data stream can use up
too much CPU capacity, forcing the application to operate at lower sampling rates.

A second option is to compensate for the different data rates. In the power relaying example, trigger events are
determined by analyzing the data from one input channel pipe:

LIMIT(IP4, INSIDE, 19660, 32767, Tbreak, \
 INSIDE, 6553, 32767)

This trigger is asserted based on scanning data in a single channel, IP4. The following WAITWAITWAITWAIT command retains data
from four data channels using the input channel list IP(0,1,2,3), which has 4 times as much data as the pipe IP4:

WAIT (IP(0,1,2,3), Tbreak, 1600, 8000, $BinOut)

Failure does not occur, however. The WAITWAITWAITWAIT command is specially constructed to detect input channel lists and apply
rate adjustments for this case. No special action is necessary. This allows a trigger-writing task to trigger on one
input channel while the trigger-reading task takes the corresponding data from any combination of input channels.

Suppose that the samples from the four data channels are first copied into a separate pipe using the following
commands:

COPY (IP(0,1,2,3), P4)
WAIT (P4, Tbreak, 1600, 8000, $BinOut) // ERROR!

This configuration will fail. The WAITWAITWAITWAIT command receives exactly the same data as before, but now there is a data
rate problem. The WAITWAITWAITWAIT command cannot know that data from four input channels are multiplexed in one data pipe.

Let’s make the situation even worse. Suppose that the data are noisy, and in an attempt to reduce the level of the
noise the voltage measurements are averaged in groups of five using a BAVERAGEBAVERAGEBAVERAGEBAVERAGE command.

BAVERAGE (IP(0,1,2,3), 4, 5, Pavg5)

Chapter 16 DAPL Software Triggering 115

Now the data rate is increased by a factor of four because of the multiple channels, but immediately reduced by a
factor of five because of the data processing.

The TRIGSCALETRIGSCALETRIGSCALETRIGSCALE command can adjust timestamp values to account for rate differences. It can compensate for
multiple channels and data rate changes. A multiplier factor of four accounts for the four channels, and a division
factor of five accounts for the data processing reduction. After the averaging operation in groups of five, there are
forty samples for each power cycle in each channel. The following is the modified DAPL configuration:

TRIGGERS Tbreak,Tscaled
PIPES Pavg5

PDEFINE capture
 BAVERAGE (IP(0,1,2,3), 4,5, Pavg5)
 LIMIT(IP4, INSIDE,19660,32767, Tbreak, \
 INSIDE,6553,32767)
 TRIGSCALE (Tbreak, 0,4,5, Tscaled)
 WAIT (Pavg5, Tscaled, 320,1600, $BinOut)
END

116 Chapter 16 DAPL Software Triggering

Starting and Stopping Triggers

Triggers act much like data pipes when accessed in more than one processing procedure. When a processing
procedure is started, the DAPL system determines the number of trigger parameter references by task definition
commands for that procedure. One of these references must be a trigger writing task, and the rest must be trigger
reader tasks. The trigger readers do not have to be in the same procedure as the trigger writer, but all active readers
for one trigger must be in the same processing start group. The trigger begins continuous operation, with dynamic
allocation and release of memory, when all reader and writer tasks for the trigger are started.

An important difference between a trigger and a data pipe is that a trigger does not retain past history when all
readers and writers stop using it. Suppose there are two processing configurations, named A and B, with a task in
procedure A writing trigger information and a task in B reading it. When the following sequence is executed, the
reading tasks in group B will see no trigger events:

START A
STOP A
START B

This occurs because no readers or writers remain active when procedure group A stops, so the triggers discard all old
information.

On the other hand, when the following is executed, the tasks in group B will see the trigger events:

START A
START B
STOP A

Note that continuous operation is never quite achieved in this example. The only time that all reader and writer tasks
are simultaneously active is for the tiny interval after the readers start and before the writer stops. Hence, operation
of the trigger has a finite capacity and will eventually terminate.

In the previous example, the following sequence would not be allowed:

START A
START B
STOP A
START A

After any tasks using a trigger are stopped, all tasks accessing the trigger must be stopped to clear the trigger. After
that, new tasks can use it.

Chapter 16 DAPL Software Triggering 117

Triggering Modes

Examples in other parts of this chapter concentrate on data capture. There are also applications that are less
concerned about detecting and measuring special events, but more concerned about limiting the amount of data
processed. For these applications, trigger operating modes are especially useful.

Data display requirements, for example, are very different from the requirements for data capture. It can often be
assumed that the data are already captured and available; the problem is, which parts are needed for display? Some
of the special requirements:

• Too much data transfer activity on the PC bus can interfere with other processing. Data transfer activity might

need to be limited.
• Graphics displays are very slow. Time must be allowed to complete the display once a data block is accepted.
• Time must be allowed for the user to see and perhaps respond to the display.
• The display might need an occasional refresh even when nothing important occurs.

Trigger modes are very useful for coordinating data displays and process control applications. Trigger operating
modes modify the way that trigger events are asserted, and can also generate events artificially. Operating modes act
as filters, accepting some events, suppressing others. Trigger properties adjust the behaviors of the operating modes.

The operating modes are as follows:

• NORMAL Triggered display operation

The NORMAL mode simulates normal mode operation of an oscilloscope, in which a display sweep must be
completed before responding to another trigger event. It has a HOLDOFF property specifying the number of samples
until the triggering can occur. The default HOLDOFF interval is 0.

• DEFERRED Triggered displays for clustered events

This mode is the same as NORMAL mode, except that, instead of ignoring an event that occurs during the HOLDOFF
interval, the event is delayed until just after the HOLDOFF interval. This mode is useful when events tend to arrive in
clusters rather than as isolated incidents.

• MANUAL Respond to single events

This mode is similar to hardware triggering using HTRIGGERHTRIGGERHTRIGGERHTRIGGER ONESHOT. Processing is the same as NORMAL mode
until an event occurs. The trigger responds to only this event, and then sets its GATE property to DISARMED. The
trigger will not assert again until the GATE property is reassigned an ARMED property. See the discussion of the
ARMED and DISARMED properties below.

• AUTO Triggered displays with self-timer

This mode is similar to NORMAL mode, except that artificial events are inserted at regular intervals when no events
occur otherwise. This simulates the automatic triggering mode of an oscilloscope. The number of samples between
artificial events is specified by the CYCLE property of the trigger. This mode is useful for applications where a data
display must be refreshed periodically even if no events occur. Note that if the cycle is too small, real events can be
buried in a large number of artificially generated events.

118 Chapter 16 DAPL Software Triggering

The operating modes use the following trigger properties to configure their operation:

• GATE Asynchronous enable and disable

Any trigger except native mode can be asynchronously enabled or disabled by assigning a value to the GATE
property. When the GATE property is set to DISARMED, all trigger events are ignored until the property is set to
ARMED. An initial value can be set when the trigger is defined. The value can be changed later using the TRIGARMTRIGARMTRIGARMTRIGARM
command, or using the EDITEDITEDITEDIT command. The exact sample at which the asynchronous arming or disarming takes
effect is unpredictable, because it is not associated with a data event. All triggering modes except NATIVE mode
respond to the GATE property. Default is ARMED.

• HOLDOFF Temporary disable after each event

This property specifies a number of samples during which no new assertions are accepted into the trigger pipe after
asserting a trigger event. This simulates the holdoff operation of an oscilloscope, in which a display sweep is
completed before responding to a new trigger event. A non-zero holdoff guarantees a time separation between
consecutive events. The holdoff is applied both to real and artificial events. This property is most useful for NORMAL
and DEFERRED operating modes, but can be used with all modes except NATIVE. Default is zero.

• STARTUP Temporary disable at initial startup

This property specifies an interval similar to HOLDOFF, except that events are ignored if they occur during the
specified number of initial samples. This property is useful for systems that require a settling time before
measurements can begin. Default is zero.

• CYCLE Automatic interval for artificial events

This property sets the number of samples between artificially generated events for the AUTO mode.

This is a lot of options, but in most cases it will be clear which is the best operating mode. Given the operating
mode, choosing appropriate property values is usually very straightforward. Examples in the next section show some
typical combinations of trigger modes and properties.

• NATIVE Deprecated

This mode is equivalent to NORMAL mode, except that it does not allow adjustment of the default property values.

Chapter 16 DAPL Software Triggering 119

Applying Trigger Operating Modes

Oscilloscope Emulation Application

The PC must display data for events that occur frequently but not at precisely defined intervals. Triggering is used
for two purposes: to extract a useful portion of the available data, and to “stabilize” the position of the data in a
graphical display window. It is necessary to limit the update rate, so that the screen display is not chaotic.

For this application, NORMAL mode is selected. NORMAL mode uses a HOLDOFF property. When a block of data is
selected for display, there follows a delay interval (number of samples) during which no additional trigger events are
accepted. This number can match the data block size, or it can be longer to provide an extra delay.

Suppose that the PC application displays blocks of 500 samples. The display should show data for the special events
only, and each display should remain for at least two seconds. For a data stream sampled at 50 microsecond
intervals, a two-second HOLDOFF interval corresponds to 40000 samples. Configure the trigger as follows:

 TRIGGERS Tscope MODE=NORMAL HOLDOFF=40000

Process Monitoring Application

For this application, data are again displayed, but special events are relatively rare. In fact, they are undesirable —
they mean product defects. On the other hand, no defects means that there is little of interest to see in the data.
Rather than leave the display screen empty, the display is occasionally refreshed with current data, interesting or not.

Suppose that display updates are required about once every five seconds. However, if a special event occurs, these
data should be displayed immediately, but no more than two screen updates per second. Assume that a sample is
taken every 100 microseconds, so that a five second delay corresponds to 50000 samples, and a 1/2 second delay
corresponds to 5000 samples. Use a CYCLE property to set up the refresh interval, and a HOLDOFF property to
enforce the two-per-second limit. Configure the trigger as follows:

 TRIGGERS TMonitor MODE=AUTO CYCLE=50000 HOLDOFF=5000

Event Counting Application

For this application, product defects must be detected and counted using information from a sensor data stream. The
defects show up as a disturbance. Very simple triggering can be used to detect disturbances and eliminate data that
obviously contain nothing of interest. On the other hand, simple triggering is not able to distinguish a defect from an
unrelated disturbance. To analyze the data, and recognize the actual defects, portions of the signal both before and
after a possible defect must be retained. The NORMAL mode is suitable when defects occur in isolation. But if defects
occur in clusters, the NORMAL mode will lose some of the context for an event near the end of a data block. So, select
the DEFERRED mode.

120 Chapter 16 DAPL Software Triggering

Suppose that detecting a defect requires a data block with 40 points before and 88 points after each event. Configure
a WAITWAITWAITWAIT command to capture this data block. Set up the trigger in DEFERRED mode, with the property HOLDOFF=128,
which covers both the before-event and after-event samples. Configure the trigger as follows:

 TRIGGERS TOutlier MODE=DEFERRED HOLDOFF=128
 ...
 WAIT (PDATA, TOutlier, 40, 88, $BinOut)

Destructive Tests and One-Shot Events

Destructive tests are discontinuous — after one test piece is stressed to failure, it must be scrapped and the next
piece mounted. When a test piece is ready, there is one test, and one data block collected. Data collection must not
be allowed until the next test is ready.

One way to do this is to start and stop the application repeatedly, but the MANUAL triggering mode is easier.

Suppose for example that each test involves loading a test piece until it fractures. For this application, start a data
acquisition configuration using a trigger operating in MANUAL mode, with the GATE=DISARMED property. The trigger
will not respond to anything because it is disarmed. Once the test is ready, enable the GATE=ARMED property by
sending a nonzero number to the TRIGARMTRIGARMTRIGARMTRIGARM command through a data pipe. Actual data collection begins when the
trigger is asserted, for example, after a non-zero force is measured. Once data collection begins, the MANUAL mode
trigger changes its GATE property to DISARMED. The trigger will not respond to another event until GATE=ARMED is
set again.

A configuration using the TRIGARMTRIGARMTRIGARMTRIGARM command to control the GATE property is as follows:

TRIGGERS TDestruct MODE=MANUAL GATE=DISARMED
PIPE PEnable
 ...

// Processing command to control trigger GATE
TRIGARM (PEnable, TDestruct)
 ...
START

When it is time to run the next experiment, activate the trigger. To do this, put a nonzero value into the pipe
monitored by the TRIGARMTRIGARMTRIGARMTRIGARM command:

// Send a command to arm the trigger
FILL PEnable 1
// Trigger is now armed
 ...

Chapter 16 DAPL Software Triggering 121

Timestamp-Modifying Commands

Sometimes triggering is required when a combination of events occurs. The TANDTANDTANDTAND and TORTORTORTOR commands allow
combining trigger events from multiple sources to produce a new, composite trigger event.

For the protective relaying example, relaying events of interest might be only those where there is a large voltage
imbalance. When a voltage imbalance occurs, voltage peaks are outside their normal range. Data are recorded if
breaker operation and large voltage disturbance both occur within the same power cycle.

Six software triggers and three extra pipes are defined:

PIPES PA1, PA2, PA3
TRIGGERS Tph1, Tph2, Tph3
TRIGGERS Tpeak, Tpickup, Tcombined

Suppose that 22000 is the nominal digitized peak voltage, so a peak outside the range 17600 to 26400 is more than
20% offset from nominal. The peak value will be either the most positive or the most negative value observed
during a cycle.

ABS (IP0, PA0)
ABS (IP1, PA1)
ABS (IP2, PA2)
HIGH (PA0, NCYCLE, PHIGH0)
HIGH (PA1, NCYCLE, PHIGH1)
HIGH (PA1, NCYCLE, PHIGH2)

Produce a trigger for this cycle if any of the three peak values is unexpectedly high or unexpectedly low.

LIMIT (PHIGH0, OUTSIDE,17600,26400, Tph0)
LIMIT (PHIGH1, OUTSIDE,17600,26400, Tph1)
LIMIT (PHIGH2, OUTSIDE,17600,26400, Tph2)

This analysis produces three separate trigger streams, one for each phase. The TORTORTORTOR command combines these
streams into a single event stream that represents voltage disturbance on any of the three phases:

TOR (Tph0, Tph1, Tph2, Tpeak)

With 200 samples per cycle, any voltage disturbance event occurring within 200 cycles of a circuit breaker event is
of interest. These are found using the TANDTANDTANDTAND command.

TAND (Tpeak, Tpickup, Tcombined, 200)

122 Chapter 16 DAPL Software Triggering

Triggers and Independent ON/OFF Events

The applications so far capture data in fixed time intervals. In the power relaying example, a circuit-breaker event
completes in twelve power cycles, so a fixed-size data block is appropriate. For other applications, the amount of
data may not be known in advance.

For example, transient disturbances can induce torsional oscillations in the main shaft of rotating machinery. If these
oscillations are large enough, they can lead to mechanical failure. By monitoring oscillation events, a cumulative
assessment of damage can be made, and preventative maintenance scheduled.

The problem is that damping of the oscillations depends on unpredictable external conditions such as load
characteristics and the presence of voltage compensation devices. The oscillations might damp out quickly or sustain
for a dangerously long time. There is no way to know in advance whether small or large amounts of data are
necessary.

Toggled trigger operation uses an ON condition to initiate data acquisition and a second OFF condition to terminate
it. In the torsional oscillation example, mechanical strain measurements can be analyzed continuously by a digital
filter tuned to the dominant oscillatory modes of the machine. If the filter’s output reaches a sufficient level, an ON
event occurs, and data acquisition begins. Once the filtered oscillations drop to insignificance, an OFF event occurs,
and data acquisition is terminated. Analysis and data logging are performed off-line by the PC host. The point is that
triggering is controlled by two events, rather than just one.

DAPL provides three special commands to support toggled trigger operation.

• TOGGLETOGGLETOGGLETOGGLE
• TOGGWTTOGGWTTOGGWTTOGGWT
• TCOLLATETCOLLATETCOLLATETCOLLATE

The TOGGLETOGGLETOGGLETOGGLE command detects ON and OFF events, enforcing a strict alternating protocol. The TOGGWTTOGGWTTOGGWTTOGGWT command
takes data from an input stream under control of the events asserted by the TOGGLETOGGLETOGGLETOGGLE command. The TCOLLATETCOLLATETCOLLATETCOLLATE
command provides an alternative means for generating an ON/OFF event stream.

For the torsional monitoring example, the signal from a custom-designed filtering task is used to detect oscillations.
The details of this filter are not discussed here. The maximum frequency at which damage can occur is presumed to
be about 75 Hz, so a minimum sampling frequency of about 150 Hz is necessary for successful filtering. Assume
that the digital filtering decimates by a factor of ten. This leaves a factor of ten difference between the data rates of
the filtered data and the raw strain data. Presume that an engineering analysis has determined that a filter output of
more than 4000 on a scale of 0 to 32767 indicates potential damage, and that a filter output of less than 2000
indicates that danger is past.

The following DAPL configuration can be used to continuously monitor the strain data:

IDEFINE samp 1
 SET IP0 s0 // phase1
 TIME 333.30 // 150 Hz x 20 oversample
END

The following DAPL configuration performs the processing. It uses a custom command CFILT to filter the signal
and the TOGGLETOGGLETOGGLETOGGLE command to signal ON and OFF events depending on the output level of CFILT. The TRIGSCALETRIGSCALETRIGSCALETRIGSCALE

Chapter 16 DAPL Software Triggering 123

command compensates for the factor of 10 data reduction applied during digital filtering. The TOGGWTOGGWTOGGWTOGGWTTTT task then
sends the selected strain data to the PC for logging and analysis.

PIPE P1
TRIGGERS TOGGLE, SCTOGGLE

PDEFINE detect
 CFILT (IP0, P1) // decimates by 10
 TOGGLE(P1, INSIDE, 4000,32767, \
 OUTSIDE, 2000,32767, TOGGLE)
 TRIGSCALE(TOGGLE,0,10,0,SCTOGGLE)
 TOGGWT(IP0, SCTOGGLE, $BinOut)
END

124 Chapter 16 DAPL Software Triggering

Triggering with Multiple Data Acquisition Processors

The TRIGSENDTRIGSENDTRIGSENDTRIGSEND and TRIGRECVTRIGRECVTRIGRECVTRIGRECV commands are useful in applications where there are many data channels and
acquisition must be coordinated among multiple Data Acquisition Processors. For example, samples can be captured
on many data channels simultaneously using expansion expansion boards that feature this capability. With many of
these boards, however, a single xDAP processor might not be able to collect all of the samples from all of the boards
fast enough. Or a single host PC might not have enough data bandwidth to transfer all of the data fast enough. These
cases require multiple Data Acquisition Processors synchronized with a master-slave connection.

This presents a challenge for triggering. Typically only one of the processors sees the data from the triggering
channel. How can the other processors know when to retain sample data?

The TRIGSENDTRIGSENDTRIGSENDTRIGSEND command encodes triggering information and sends it through communication pipes to other Data
Acquisition Processor boards. The TRIGRECVTRIGRECVTRIGRECVTRIGRECV command on the receiving board decodes the triggering information,
writing it into triggers where it can be accessed to control data acquisition. This provides the means for exchange of
triggering information.

On the MASTERMASTERMASTERMASTER board, a trigger-generating command such as LIMITLIMITLIMITLIMIT generates the events. The triggering
information must then be transferred to the other Data Acquisition Processors through communication pipes. Extra
communication pipes for this purpose can be set up using the DAPcell control panel application.

• Select the Browser tab
• In the graphical device tree window, expand the display for the two Data Acquisition Processors.
• Right click on the Compipes element.
• In the dialog box, select Create.

In this manner, create a Cp2Out pipe for the master Data Acquisition Processor, and a Cp2In pipe for the slave.
Select the long data type for each. Alternatively, applications can create communications pipes using features of the
DAPcell control panel application, instead of using a configuration set up by the DAPcell control panel application.

An application program on the PC will receive the captured data. It is presumed that this same application is also
available to connect the master-to-PC and PC-to-slave communications. The application simply copies all of the
data it receives from the Tsend pipe into the Treceive pipe.

Now the two Data Acquisition Processors can be configured for input sampling. Suppose that the first Data
Acquisition Processor samples a single high-speed group of eight simultaneous channels. The master Data
Acquisition Processor is configured as follows:

IDEF A
 GROUPS 1
 SET IP(0..7) SPG0
 TIME 4
 MASTER
END

The slave board is configured similarly, except that the MASTERMASTERMASTERMASTER command is replaced by SLAVESLAVESLAVESLAVE.

The boards must also be configured for processing. The configuration is almost the same, except that the master
board detects and sends trigger events to the slave, while the slave receives and responds to the events. Note that the
slaves capture eight data channels, while the master board captures only seven, so the data blocks transferred to the

Chapter 16 DAPL Software Triggering 125

PC application from the slave are larger. If this is a problem, the trigger channel could be used as a source of
padding data on the master board, to make the blocks the same size.

Processing on the master Data Acquisition Processor:

TRIGGER TXF

PDEF B
 // Monitor one channel and generate trigger events
 LIMIT(IP7,INSIDE,LOWLIM,HILIM,TXF)
 // Notify slave of events and progress
 TRIGSEND(TXF, 1000, Cp2Out)
 // Capture 7 data channels
 WAIT (IP(0..6),TXF,0,7000,$BinOut)
END

Processing on the slave Data Acquisition Processor:

TRIGGER TXF

PDEF B
 // Receive trigger events
 TRIGRECV(Cp2In,TXF)
 // Capture 8 data channels
 WAIT (IP(0..7),TXF,0,8000,$BinOut)
END

A slave board configuration is completed by interaction with the master board. To prepare for this, the slave board
must be started first. The slave will not do anything until the master is ready.

Start the master Data Acquisition Processor last, to complete the initialization. Both boards will begin sampling and
buffering data simultaneously, but will not retain any data until the triggering conditions on the master board are
satisfied.

126 Chapter 16 DAPL Software Triggering

Asynchronous Events and PCASSERT

PC host applications run at a low priority determined by the host operating system policy. A PC application can
proceed when computing resources are available to it. When exactly this will occur is unpredictable and
unmeasurable. The only thing the application knows is that it is running now and needs data now. Software
triggering provides a means of selecting data on an as-needed basis.

The difficulty is, when the PC asks for data now, what exactly does that mean? The PCASSERTPCASSERTPCASSERTPCASSERT command provides
an answer. It maintains information about the status of a data stream, as current as possible. When a request arrives,
the PCASSERTPCASSERTPCASSERTPCASSERT command uses the status information to artificially manufacture a trigger event. This event is then
used to select a block of data for the PC.

When there is a single stream of samples, PCASSERTPCASSERTPCASSERTPCASSERT can use the system hardware sample status to derive a sample
number. For example, suppose that the PC needs a block of 400 samples from a single channel. The PC signals the
PCASSERTPCASSERTPCASSERTPCASSERT command by placing a number into the binary input pipe. When it receives the request, the PCASSERTPCASSERTPCASSERTPCASSERT
command then determines an appropriate timestamp and asserts an event in trigger TRIGPC.

PCASSERT ($BinIn, TRIGPC)
WAIT (IP0,TRIGPC,200,200,$BinOut)

No reference stream is provided, so the PCASSERTPCASSERTPCASSERTPCASSERT command looks up the current sample count from the hardware
status, and uses that to generate the event timestamp. The WAITWAITWAITWAIT command responds to the event, takes 200 pre-
trigger and 200 post-trigger samples, and sends them immediately to the PC.

This works because samples are taken from a single data channel. What about the case when there are multiple
channels? The system sample count, which includes all samples from all channels, is wrong for taking samples from
individual channels.

There are several ways to get around this. One easy way is to use the optional third parameter of the PCASSERTPCASSERTPCASSERTPCASSERT
command to specify a data reduction factor. If there are four input channels, for example, the rate in any data
channel is 1/4 of the net system rate. Thus, we can specify

PCASSERT ($BinIn,TRIGPC,4)
WAIT (IP(0,1),TRIGPC,200,200,$BinOut)

Recall that the WAITWAITWAITWAIT command is aware of the number of input data channels in its input list. Once PCASSERTPCASSERTPCASSERTPCASSERT
asserts a meaningful sample number for a single channel, the WWWWAITAITAITAIT command can read from any number of
channels.

Another way is to allow the PCASSERTPCASSERTPCASSERTPCASSERT to monitor one of the data channels.

PCASSERT ($BinIn, TRIGPC, IP0)

This is usually not necessary for input channel data. But suppose the WAITWAITWAITWAIT command takes blocks of processed data,
which might result from another triggering process. Now the system sampler count has no useful relationship to the
number of samples available in the data pipe.

Chapter 16 DAPL Software Triggering 127

For this situation, we can allow PCASSERTPCASSERTPCASSERTPCASSERT to monitor any appropriate data stream to maintain its reference count.
Suppose that pipe ANYPIPE contains an arbitrary data stream. The following commands monitor and extract current
data from this pipe:

PCASSERT ($BinIn, TRIGPC, ANYPIPE)
WAIT (ANYPIPE,TRIGPC,200,200,$BinOut)

The following example illustrates fetching blocks of 256-point FFT spectrum data to a PC application. This example
uses an alternate means of signaling the PCASSERTPCASSERTPCASSERTPCASSERT command.

Suppose that FFTFFTFFTFFT computations occur continuously, faster than the PC can use all of the data.

FFT (5, 9, 0, IP0, SPECTRA)

The PC requests a spectrum block by setting variable VREQ to a nonzero value using a LET command:

LET VREQ=1

The PCASSERTPCASSERTPCASSERTPCASSERT command monitors the number of samples available in the SPECTRA pipe.

PCASSERT(VREQ, TRIGPC, SPECTRA)

The data appear in blocks of 256 samples, but this means that PCASSERTPCASSERTPCASSERTPCASSERT will always detect the last sample in a data
block. We want the beginning of a block, not the end. We correct this problem by modifying the event timestamps,
using the TRIGSCALETRIGSCALETRIGSCALETRIGSCALE command as described earlier in this chapter.

TRIGSCALE(TRIGPC, 0, 256, 256, TRIGSP)

This operation produces trigger timestamps in trigger TRIGSP that indicate the starting locations of completed
spectrum blocks in storage. The WAITWAITWAITWAIT command takes each block beginning at the sample indicated. Data that are
not requested are silently discarded.

WAIT(SPECTRA, TRIGSP, 0, 256, $BinOut)

This technique of pre-computing values and having them ready to go upon request provides immediate response.

Chapter 17 Digital Filtering 129

17. Digital Filtering

Digital filtering removes unwanted frequency components from digital data. This chapter describes digital filtering
commands available in DAPL.

Average and Running Average

AVERAGEAVERAGEAVERAGEAVERAGE and RAVERAGERAVERAGERAVERAGERAVERAGE implement two of the simplest digital filters. AVERAAVERAAVERAAVERAGEGEGEGE reads blocks of ‘n’ data values and
returns the averages of the blocks. RAVERAGERAVERAGERAVERAGERAVERAGE maintains a moving block of ‘n’ data values, and returns averages of
the moving block. RAVERAGERAVERAGERAVERAGERAVERAGE starts by reading in enough data values to fill one block and computes one average
value. Then, it repeats a sequence of throwing out the oldest value in the block, reading a new value into the block,
and returning the average of the block.

It is important to note that AVERAGEAVERAGEAVERAGEAVERAGE reduces the data rate, where RAVERAGERAVERAGERAVERAGERAVERAGE does not. AVERAGEAVERAGEAVERAGEAVERAGE returns one value
for each ‘n’ values it reads. After initially filling the block it maintains, RAVERAGERAVERAGERAVERAGERAVERAGE returns one value for each value
it reads.

AVERAGEAVERAGEAVERAGEAVERAGE and RAVERAGERAVERAGERAVERAGERAVERAGE implement simple lowpass filters. These commands should be considered for some
applications, especially for reducing wide-band random noise. Additional digital filtering commands provided by
DAPL implement specialized frequency-selective filters.

130 Chapter 17 Digital Filtering

Finite Impulse Response Filters

The digital filtering commands FIRFILTERFIRFILTERFIRFILTERFIRFILTER and FIRLOWPASSFIRLOWPASSFIRLOWPASSFIRLOWPASS implement finite impulse response (FIR) filters. A
finite impulse response filter is determined by a vector v of filter coefficients. The filter output corresponding to a
block of data is calculated by multiplying each term in the block of data by the corresponding entry in the vector v
and adding the products. This means that the block of data must have the same length as the length of the vector.

When a digital filtering task starts to process a stream of data, the task first begins by reading in enough values to
produce one sum of products. In a typical filtering application, FIRFILTERFIRFILTERFIRFILTERFIRFILTER, like RAVERAGERAVERAGERAVERAGERAVERAGE, maintains a block of
data. Each time FIRFILTERFIRFILTERFIRFILTERFIRFILTER reads one data value, it removes the oldest data value from its block of data and
appends the new value to the block. It then calculates one output value. Thus, after a startup sequence, FIRFILTERFIRFILTERFIRFILTERFIRFILTER
returns one filtered value for each input value.

FIRFILTERFIRFILTERFIRFILTERFIRFILTER usually operates like RAVERAGERAVERAGERAVERAGERAVERAGE, generating one result for each input sample received. But the
commands FIRFILTERFIRFILTERFIRFILTERFIRFILTER and FIRLOWPASSFIRLOWPASSFIRLOWPASSFIRLOWPASS operate like AVERAGEAVERAGEAVERAGEAVERAGE in the sense that they can reduce the output data
rate by discarding some of the filtered data. Reducing the amount of data is appropriate for many applications in
which an input is oversampled and then passed through a lowpass or bandpass filter. After filtering removes the high
frequencies, fewer samples are needed to accurately represent the resulting signal, and there is no need to retain all
of the filtered data.

FIRFILTERFIRFILTERFIRFILTERFIRFILTER has a parameter n called “decimation” that specifies data reduction. After each calculation, FIRFILTERFIRFILTERFIRFILTERFIRFILTER
loads n-1 values without calculating. Then, after reading the n-th value, FIRFILTERFIRFILTERFIRFILTERFIRFILTER calculates another filtered
value.

FIRFILTERFIRFILTERFIRFILTERFIRFILTER also has optional “take” and “skip” parameters that allow blocks of data to be alternately retained or
rejected, retaining complete signal information locally but reducing the overall volume of data.

FIRLOWPASSFIRLOWPASSFIRLOWPASSFIRLOWPASS is a variant of FIRFILTERFIRFILTERFIRFILTERFIRFILTER. FIRLOWPASSFIRLOWPASSFIRLOWPASSFIRLOWPASS allows values of 2 through 12 for the decimation factor, and
provides predefined symmetric filter vectors appropriate for lowpass filtering using these levels of decimation.

Generating Filter Coefficients

Filter coefficients may be calculated from the frequency spectrum of an ideal filter. This procedure is automated and
integrated into the DAPstudio software from Microstar Laboratories. After adjusting the controls to obtain a filter
characteristic that you think will work, DAPstudio allows you to test the filter on real data interactively, so you can
immediately observe the effects and adjust the filter design as necessary.

Window Vectors

Most ideal filter characteristics have a filter vector with an infinite number of terms. Approximating the infinite
filter vector with a filter vector having a finite number of coefficients leads to approximation errors. All FIR filters
suffer from this to some degree. Side effects related to the finite filter length are reduced by multiplying the
coefficient values by a window function. This typically is a symmetrical function whose values approach zero near
the ends of the block. The DAPstudio software includes the windowing as part of a filter design, and you can switch
it in and out of service to observe costs and benefits.

Chapter 17 Digital Filtering 131

Phase Response and Time Delay

All of the filters designed by DAPstudio software have an odd-numbered length, with symmetry around the center
coefficient. A symmetric FIR filter having 2M+1 coefficients has the property that the output values are delayed by M
samples. This delay is sometimes interpreted in the frequency domain as a phase shift. A pure time delay causes an
apparent phase shift at each signal frequency proportional to the frequency; and for this reason symmetric filters are
sometimes called linear-phase filters. For purposes of analysis, the phase-shift point of view is very important, but in
the sampled-data world, the time-delay interpretation is more immediately useful.

The time delay is of critical importance, for example, when analyzing peaks in a filtered signal for purposes of
triggering. For such applications, a ‘phase correction’ parameter is provided by the FIRFILTERFIRFILTERFIRFILTERFIRFILTER command. The
correction parameter can be set to the value M, or specify the artificial parameter value -1 and the FIRFILTERFIRFILTERFIRFILTERFIRFILTER
command will apply the appropriate correction. FIRFILTERFIRFILTERFIRFILTERFIRFILTER makes the correction by adding extra samples to the
output stream. After this adjustment, features in the filtered data stream will correspond in position to features of the
original unfiltered data stream.

This alignment of the input and output data streams should not be confused with real-time response. 2M+1 samples
are still required before the first output value can be computed, but the first filter computation corresponds to input
term M+1. There is a real-time delay of M samples between the most current sample taken and the most recent filter
output generated. This delay cannot be avoided when using a symmetric filter.

It should be noted that the FIRFILTERFIRFILTERFIRFILTERFIRFILTER command is not restricted to using symmetric filters. Filters designed using
other techniques may have other delay characteristics and could require a time shift correction other than M+1.

Chapter 18 Fourier Transforms 133

18. Fourier Transforms

 The Fourier transform is a mathematical operation that converts data from the time domain to the frequency domain,
or the reverse, from a frequency spectrum to a time sequence. Using the Fourier transform, complex signals are
represented in terms of “complex exponentials” consisting of cosine (real) and sine wave (imaginary) parts. While
very useful theoretically, these transforms don’t in general have a simple finite form that is straightforward to
compute.

The discrete Fourier transform (DFT) is a mathematical operation that approximates the Fourier transform for blocks
of sampled data. Where a general Fourier Transform has a complex value corresponding to every value of its
frequency variable, a Discrete Fourier Transform has defined values only at a finite set of equally-spaced discrete
frequencies. The frequencies represented by a DFT are harmonics of one frequency, called the fundamental
frequency. The data block used by the DFT has a length equal to one cycle of this fundamental frequency. The DFT
can be computed directly from data obtained by sampling a continuous signal. The fast Fourier transform (FFT) is
an efficient algorithm for calculating the DFT.

The DFT has two forms, which are mutually inverse operations. The forward transform converts time domain data
(a sequence of samples over time) to frequency domain data (a sequence of frequency harmonics spanning a
frequency band). The inverse transform goes in the other direction, from frequency domain to time domain.
Performing the forward transform and then the reverse transform should return the original data set, but as it turns
out, there is an extra factor of N where N is the number of terms in the data block. This extra factor needs to be
cancelled somewhere. Because DAPL is used primarily for computations on measurement data, the forward
transform is used much more often than the inverse transform. Because the data are better scaled after applying the
extra 1/N factor, the DAPL system applies it to the forward transform.

Even with real-valued input data, the Fourier transform produces complex-valued output data. In many cases the
interesting information is in the amplitudes, obtained by combining the parts of the complex output spectrum values.
Squaring the amplitudes yields a power spectrum, or more precisely, power spectral density. Sometimes the
complex values are converted to polar form, yielding amplitude and phase angle.

134 Chapter 18 Fourier Transforms

DFT Command

Though not elegant mathematically, direct computations of the DFT transforms are useful for computing a few
frequency terms. For computing a full spectrum, however, you will want to use the FFTFFTFFTFFT command.

As a rule of thumb, if the power-of-two size parameter that you would specify for the FFTFFTFFTFFT command is M, the DFTDFTDFTDFT
command is worth consideration for computing 2M or fewer frequencies. It will take less time than computing the
full spectrum with the FFTFFTFFTFFT command and discarding all of the frequency terms you don’t need.

The FFTFFTFFTFFT command depends on symmetries that arise when the data blocks are restricted to certain special sizes. The
DFTDFTDFTDFT command does not depend on those symmetries and consequently you can perform analysis on a data block of
arbitrary length. Also, the FFTFFTFFTFFT command requires well-structured operations that span across the data block, while
the DFTDFTDFTDFT analysis can be performed sequentially from the start of the data set to the end, without buffering the input
data. This lets a DFTDFTDFTDFT analysis process very long data blocks, but with a risk of losing numerical precision.

Like the FFTFFTFFTFFT command, the DDDDFTFTFTFT command supports windowing of the input data, and it provides various output
forms.

FFT Command

The FFTFFTFFTFFT command is efficient and versatile. It includes window pre-processing, the actual transform, and post-
transform data conversions. The price of this efficiency is that the block size is restricted to be a power of 2. The
FFTFFTFFTFFT command accepts block sizes from 4 to 16384. For computing spectra over a wide band at high resolution, the
FFTFFTFFTFFT command is the first choice.

The FFT algorithms require pre-computed tables of coefficients. When FFT sizes are large, these tables become
large. To avoid wasted storage, these tables are not allocated in memory until an FFT task is defined. A small FFT
can work with a large table, but a large FFT cannot work with a small table. If FFT sizes are mixed, define the tasks
with a larger FFT size first.

Chapter 18 Fourier Transforms 135

Choosing Data Types

When the 1/N factor is applied to the forward transform, a cosine wave of 10000 units RMS produces a 10000 units
RMS peak in the spectrum. But when working with signals that span a broad range of frequencies, the magnitudes of
individual terms are much smaller, decreasing approximately inversely as the block length increases.

Most applications involve signals containing various degrees of random noise. If there are initially K noisy bits, the
noise level tends to increase to about K+N/2 noisy bits during the DFT computations. The scaling by 1/N just drops
bits that were already lost to noise anyway. For these common cases, direct processing of WORD-type data, directly
from input samples, is efficient and works just fine. This is the most common way of using the FFTFFTFFTFFT command.

For detecting subtle effects in clean signals, however, it is better to avoid loss of numerical precision by performing
the FFT calculations using a floating point data type. To use floating point data types, first convert the data type of
your input data blocks using a DAPL expression task. A FLOAT data type typically works well, and you should try it
first. If there are any remaining side effects from scaling or rounding, use a DOUBLE data type.

136 Chapter 18 Fourier Transforms

FFT Modes

The FFTFFTFFTFFT command provides selected combinations of input, transform, and output processing operations that cover
most application requirements. These combinations are called modes.

The seven modes of FFTFFTFFTFFT are:

0. forward transform, real input data, complex output data
1. forward transform, complex input data, complex output data
2. inverse transform, complex input data, real output data
3. inverse transform, complex input data, complex output data
4. forward transform, real input data, power spectrum output data
5. forward transform, real input data, amplitude spectrum output data
6. forward transform, real input data, amplitude and phase output data

The DFTDFTDFTDFT command supports a subset of these, the operations related to the forward transforms.

When a forward fast Fourier transform is applied to real data sequences, the transform equations cannot distinguish
from the sampled data set whether the real-valued input sequence resulted from sampling a signal below the Nyquist
frequency (at term N/2 in the spectrum) or above it. More specifically, for blocks of size N, the (N-n)-th term is equal
to the complex conjugate of the n-th term, and the 0-th and the N/2-th terms are real-valued. The transform
calculations assign half of a frequency to the lower frequency and half to the “symmetric image” upper frequency.
Because of this symmetry, half of the terms in the FFT spectrum are redundant. Modes 4, 5, and 6 recombines the
redundant terms, and returns output blocks half of the size of the input blocks.

Chapter 18 Fourier Transforms 137

Windowing

The underlying assumption of an FFT is that samples in a data block represent one period of a periodic signal.
Often, a transform is applied to a data block extracted somewhat arbitrarily from a continuous data stream. In this
case, the computed FFT exhibits both the frequency components present in the data and artificial frequency
components caused by isolating the data block.

It is possible to minimize the data blocking effects by multiplying sample values in the input data block, term by
term, by a vector of coefficients called a window vector. There are some drawbacks, however. Information near the
ends of the block is reduced or lost. Statistical interpretation of the transform result is less clear, because errors in
the original data are weighted rather than uniform. A window vector generally changes the output spectrum, altering
the zero-frequency component. Frequency peaks are somewhat widened and reduced in magnitude.

DAPL provides the five most common non-parametric window types: Rectangular, Hanning, Hamming,
Bartlett, and Blackman. The Rectangular window has all coefficients equal to 1.0; this window is equivalent
to applying no window operation. Given the block size N, the other windows are given by the formulas:

1. Hanning(k) = 0.5 - 0.5 cos(2πk/N)
2. Hamming(k) = 0.54 - 0.46 cos(2πk/N)
3. Bartlett(k) = 2k/N for k < N/2,
 (2 - 2k/N) for k >= N/2
4. Blackman(k) = 0.42 - 0.50 cos(2πk/N) + 0.08 cos(4πk/N)

All FFT modes accept a window. A predefined window vector is specified in the task definition by setting the
window parameter to a numeric constant in the range 0 to 4, corresponding to the window types. Predefined window
types apply the highest weights to terms near the center of the block and the lowest weights to terms near the end of
the block. This works fine for time-domain samples, but it is rarely what you want when applying a window to a
frequency spectrum – you typically will want the highest weights near zero frequency and lowest near the Nyquist
frequency.

You can design and apply a window of your choosing. Specify the coefficients in a DAPL VECTORVECTORVECTORVECTOR, and use the
name of the vector rather than a numeric constant in the task definition parameter list. See the description of the
FFTFFTFFTFFT command for more information about setting up your own windows.

Scaling In FFT Modes

The easiest way to describe the scaling of the various FFT modes is to observe the effects of applying an FFT to a
cosine wave of peak amplitude 10000. Pick a frequency that is a harmonic (integer multiple) of the fundamental
frequency and less than the Nyquist frequency (half of the sampling frequency).

FFT mode 0 or 1 yields two nonzero spectrum components, each with magnitude 5000. If you combine the power of
the two components, 50002 + 50002, you will get the value 50000000, the result reported by Mode 4, half of the
original magnitude squared. This is consistent with the fact that the mean squared value of a cosine wave is ½ of the
peak value squared. Mode 5 reports a value 7071, which is the RMS of a cosine wave with peak magnitude 10000,
also equal to the square root of the Mode 4 power value. Mode 6 returns the amplitude along with the phase angle,
which would be 0 for a cosine wave.

138 Chapter 18 Fourier Transforms

Modes 2 and 3 are inverse FFT modes. Because the scaling is applied in the forward transform direction, no scaling
factor is applied to the reverse FFT. Sometimes this fact can be used to advantage. You can apply a reverse FFT to
real data to see the full precision on all terms, noise and all, but keep in mind that the signs will be reversed on all of
the imaginary terms.

Chapter 18 Fourier Transforms 139

Representing Sampled Data

The input for the fast Fourier transform is a block of samples of a time-dependent signal u(t). For the fast Fourier
transform, values in the input data must be sampled at equally spaced times. Denote the time between samples by τ;
then the sampling frequency is 1/τ. If time zero denotes the time at which the first sample is taken, then the k-th
sample is taken at time

t[k] = kτ.

The samples form a block

x = (x[0], x[1] ..., x[N-1]),

where x[k] = u(t[k]) denotes the k-th sample of the signal u(t).

If the block length is denoted by N, the time per block is

T = Nτ.

The Fourier transform represents the sampled signal u(t) in terms of signals that are periodic in t with period T =
Nτ. The fundamental frequency F is given by

F = 1/T = (1/N)(1/τ)

The n-th harmonic has frequency f[n], where

f[n] = nF = n/T = (n/N)(1/τ).

The 0-th harmonic is a special case; its frequency is f[0] = 0. This corresponds to a constant term whose size is
proportional to the average value of the sampled signal u(t).

When sampling a real-valued signal at an input pin at 1024 samples per second and calculating a 2048-point fast
Fourier transform, for example, the fast Fourier transform returns information about input frequencies up to 512 Hz
in steps of 1/2 Hz. Non-redundant frequency information is contained in FFT output components 0 through 1023.

140 Chapter 18 Fourier Transforms

Nyquist Frequency

The Nyquist frequency is f[N/2], half the sampling frequency. For a data block of length N, this term corresponds to
the term at position N/2 in the DFT spectrum. The n-th frequency and the (N-n)-th frequency are symmetrically
placed with respect to the Nyquist frequency.

In a typical example, the Data Acquisition Processor board takes samples at 100,000 samples per second and
computes 1024-point FFTs. Then the sampling time τ equals 10 microseconds, N = 1024, and T = 0.01024 seconds.
The Nyquist frequency is 50 kHz, and the frequencies corresponding to the FFT output are 0, 97.7 Hz, 195.3 Hz, …,
99.9 kHz.

Aliasing

 The FFT cannot distinguish frequencies above the Nyquist frequency from frequencies below the Nyquist
frequency. In a properly configured application, frequencies above the Nyquist frequency will not be present in the
original signal before sampling, hence there is no confusion about what the frequencies in the spectrum represent.
Frequencies appearing above the Nyquist frequency in the transform should then be considered equivalent to their
symmetric frequencies below the Nyquist frequency. However, if frequencies both above and below the Nyquist
frequency are present in the original signal before sampling, you have no way to distinguish them in the sampled
data set, and no way to identify the effects in your spectrum. Because of aliasing, the components at frequencies

f[(N/2)+1], f[(N/2)+2], ..., f[N-1]

appear to also produce the frequencies

f[(N/2)-1], f[(N/2)-2], ..., f[1]

Avoid aliasing problems by filtering the input signal to remove the undesirable frequencies at or above the Nyquist
frequency before sampling. Later, if you see these frequencies appear in a spectrum, you can then be sure that they
are numerical artifacts, and not problems in the original signal. A common and effective filtering technique is to use
simple hardware filtering to eliminate very high frequencies, sample at a high rate to get a valid sampling, and then
use digital filtering with decimation (such as a DAPL FIRLOWPASSFIRLOWPASSFIRLOWPASSFIRLOWPASS task) to decimate the data to the sampling rate
required by the FFT analysis.

Chapter 18 Fourier Transforms 141

The General Complex FFT

The FFT acts on blocks of N complex values

z[k] = x[k] + i y[k]

where k = 0, 1, … , N-1. The FFT returns blocks of N complex coefficients

X[n] + i Y[n]

where n = 0, 1, … , N-1. The k-th term in the original block of data equals the sum from n = 0 to N-1 of the terms

Z[n](k) = (X[n] + i Y[n]) E[n](k)

up to computational accuracy. The complex exponential terms are defined by

E[n](k) = cos(2πnk/N) + i sin(2πnk/N)

Because the complex exponentials are periodic in k, the complex coefficients can be interpreted as the frequency
components of the original data.

Note: If the original data are multiplied by a window function before the FFT is computed, the FFT gives a
representation of the modified data, rather than a representation of the original data.

Representing Sampled Data with Cosines and Sines

 When a transform is applied to a harmonic frequency that is a cosine wave, the summed sine-cosine product terms
cancel to zero, resulting in a transform with only real-valued parts. When a transform is applied to a harmonic
frequency that is a sine wave, the summed sine-cosine terms again cancel to zero, leaving a transform with only
imaginary-valued parts. This observation gives an alternative interpretation of an FFT as a decomposition into sine
and cosine waves. When the waves are sampled at the set of sample times t = t[k], the set of discrete samples from
the sine and cosine waves will be

C[n](k) = cos(2πnk/N)
S[n](k) = sin(2πnk/N)

We can also observe that cosine functions and sums of cosine functions of any frequency have a mirror image
symmetry at times t and –t, while sine functions have a negative symmetry. So the real parts of the transform can
be interpreted as the parts of the signal contributing to symmetry at frequency 0, hence also at the Nyquist frequency
by extension. Similarly, the imaginary parts of the transform can be interpreted as the parts of the signal contributing
to odd symmetry of the waveform at frequency 0 hence, and therefore also at the Nyquist frequency.

This symmetry is closely related to the phenomenon of aliasing. The difference between a sine wave and a cosine
wave is only in the phase angle. Depending on what that phase angle is, an undesirable high frequency could
produce terms with even symmetry, odd symmetry, or some combination, on the other side of the Nyquist
frequency. This is what makes aliasing so unpredictable.

142 Chapter 18 Fourier Transforms

Interpreting the FFT for Real Data

The symmetry relationships become most clear when the input data for the FFT are real-valued. The real parts of the
transform satisfy the symmetry relationship

X[n](k) = X[N-n](k)

for all k, while the imaginary parts of the transform satisfy the negative symmetry relationship

Y[n](k) = -Y[N-n](k)

From these formulas, it is clear that the n-th and the (N-n)-th transform terms are complex conjugates, and the 0-th
and N/2-th terms are real. The n-th term of the Fourier series is

(X[n] + i Y[n]) E[n](k)

and the (N-n)-th term of the Fourier series is

(X[N-n] + i Y[N-n]) E[N-n](k)

Adding these terms gives

2 X[n] cos(2πnk/N) - 2 Y[n] sin(2πnk/N)

This gives a direct representation of the original real-valued data in terms of sines and cosines. Note that the 0-th
term and the N/2-th term are real valued, located at the points of symmetry, and do not have symmetric terms. Thus
no additional factor of 2 is required to reconstruct these terms. The 0-th term results in a sequence that equals X[0] for
every term. The N/2–th term corresponds to the Nyquist frequency, and results in the sequence X[N/2] , -X[N/2] , X[N/2] ,
-X[N/2] , etc. If you have used proper anti-aliasing techniques for sampling your input signal, the X[N/2] term should be
zero or very small.

In a sense, half of the computations are unnecessary when an FFT is applied to real-valued data because half of the
computed results are redundant. DAPL already takes advantage of symmetry properties, in effect, computing a real-
data FFT of size N in approximately the same amount of time as a general complex FFT of size N/2. Because this is
done automatically, there is no advantage for you to reformulate your FFT problem in this manner.

Chapter 18 Fourier Transforms 143

Errors in the FFT

The FFT must be interpreted with care. Errors are introduced by sampling at discrete times, by sampling for only a
finite interval of time, by rounding, and by truncation.

An FFT is a multistage algorithm. Even though great care is applied to maintaining the accuracy of intermediate
results, the smallest rounding errors can propagate from stage to stage, affecting low-order bits in many locations of
the final result. The larger the FFT, the more likely that errors will accumulate. Transforms are never exact to the
very last bit. If you use a floating point number representation, however, the inaccurate bits are probably only low-
order bits that are irrelevant anyway.

The algorithms used to compute transforms for real-valued data require a special final stage that collects and
reconstructs symmetric transform results. This process is subject to rounding error, as is any other computation, and
can introduce errors into the low-order bit.

Accumulation of errors is particularly apparent in the reverse transforms. The 1/N factor of the forward transform
tends to hide most of the truncation and rounding error, but the reverse transform does not have a 1/N factor. As a
rule of thumb, if the size parameter for the FFT is m, the last m/2 bits in a reverse transform are noisy. For example,
in a 256 point transform with fixed point data, m=8, so do not attach significance to the last 4 bits, or equivalently to
differences less than 16. The error in the reverse transform usually is well modeled by “white noise” with a bounded
distribution. Averaging can sometimes cancel some of the noise, yielding additional significant bits.

Saturation effects can sometimes be a problem in reverse transforms with fixed-point data. Because the reverse
transform is not scaled by 1/N like the forward transform, an arbitrary frequency spectrum is likely to produce
saturated time-domain peaks. An inverse transform applied to data derived from a forward transform is less likely to
be affected by saturation because the 1/N factor is already in effect. On the other hand, fractional bits are lost after
the 1/N factor is applied, and the rounding effects can appear as various small artifacts in the reverse transform.

Error accumulation, truncation, and scaling considerations always apply to some degree, depending on the number
representation. If speed is less important than preserving precision, consider using floating point data types. Floating
point data types have automatic internal scaling that is very effective for avoiding precision-related error
accumulation. Better precision does not remove any noise present in the original input signal, however, so do not
confuse precision with accuracy.

Even if the Data Acquisition Processor receives a periodic analog signal at its input pins, the sampled data typically
are not periodic with period exactly equal to the block length of the FFT. Windowing compensates for data blocking
errors, but introduces other errors. Windowing artificially makes the data look periodic, but the transform of the
windowed data may differ substantially from the transform of the original data.

An FFT analyzes the frequency content of a signal in terms of harmonics of the fundamental frequency. If the signal
contains a pure oscillatory wave at one of the harmonic frequencies, only one complex term of the resulting FFT is
nonzero. If the original signal is a pure oscillatory wave, but does not coincide exactly with one of the harmonics in
the transform, the signal appears “smeared” into neighboring locations, as if the signal were not pure. This
phenomenon is known as “leakage.” Do not interpret a nonzero value in a spectrum as meaning that a signal of
precisely that frequency is actually present in the original signal. Note that the presence of a signal that is not a
harmonic of the fundamental frequency also implies that the FFT block does not exactly represent one period of the
original waveform, hence leakage and windowing are related. Windowing often reduces the effects of leakage.

144 Chapter 18 Fourier Transforms

Noise is present in most real-world data. The act of digitally sampling the signal immediately introduces some
amount of error. To the extent that this error is truly random and has constant statistical properties over time, noise
tends to appear as a uniform noise band, or ‘fuzz’, in the FFT spectrum. This noise affects every value in the
spectrum, though it is often more apparent where signal levels are low. Most real phenomena will stand out clearly
from the random noise.

Remember that arithmetic errors such as truncation and rounding also appear as noise in the computed transform.

Section II. Reference 145

Section II. Reference

Chapter 19 DAPL Commands: EXAMPLE 147

19. DAPL Commands

This chapter provides detailed descriptions for all DAPL commands. See the Applications Manual for application
examples.

Some commands are available only for certain hardware models. Others have variant forms that are specific to
certain hardware models. Look in the descriptions for each individual command for information about hardware
dependencies, or check the separate “Features of DAPL dependent on DAP model” document.

DAPL allows certain specific abbreviations for its system commands, the ones that execute immediately and are
most likely to be typed in “live.” The abbreviated forms are shown in each relevant command.

The following syntax notation is used to describe DAPL commands:

• Parameters representing numbers or symbol names are enclosed in angle brackets <>.
• Optional parameters are enclosed in square brackets [].
• If a parameter or sequence of similar parameters can be repeated, it is followed by a star *.
• If several possible command alternatives exist, the alternatives are separated by vertical bars |.
• Other notations and explicit keywords are shown as literal text.

The following page uses a fictitious sample command EXAMPLE to display the format used to describe commands.

148 Chapter 19 DAPL Commands: EXAMPLE

EXAMPLE

An example of a fictitious command with two command forms.

EXAMPLE (<param1>, <param3>)

EX (<param1>, [<param2>,] <param3>)

Parameters
<param1>

Description of this parameter.
the data types accepted by this parameter

<param2>
Example of an optional parameter accepted only by the second command form.
WORD CONSTANT

<param3>
Example of a pipe parameter for output results.
WORD PIPE | LONG PIPE

Description
This section provides a comprehensive description of input data required, what the command does, what results
are produced, and the purpose of the parameters.

Example

EXAMPLE (P1,P2)

Command text in a form that would be accepted by the DAPL command interpreter, with a detailed description of
the input data required, configurable options, and the output results produced.

See Also

Related commands

Chapter 19 DAPL Commands: ABS 149

ABS

Define a task that computes the absolute value of data values.

ABS (<in_pipe>, <out_pipe>)

Parameters
<in_pipe>

Source data pipe.
WORD PIPE | LONG PIPE | FLOAT PIPE | DOUBLE PIPE

<out_pipe>
Output data pipe.
WORD PIPE | LONG PIPE | FLOAT PIPE | DOUBLE PIPE

Description
ABSABSABSABS reads data from <in_pipe>, computes absolute values, and places the results in <out_pipe>. The data types
of the input and output pipes must match.

Example

ABS (P1, P2)

Read data from pipe P1 and place the absolute values into pipe P2.

See Also
CMAGCMAGCMAGCMAG

150 Chapter 19 DAPL Commands: ALARM

ALARM

Define a task that sets a bit on a digital output port when input data satisfy a region condition.

ALARM (<in_pipe>, [outport,] <region>, <output_bit>, [<reset>])

Parameters
<in_pipe>

Input data pipe.
WORD PIPE | LONG PIPE | FLOAT PIPE | DOUBLE PIPE

<outport>
Address of digital output port.
WORD CONSTANT

<region>
A REGION, specifying the input values that indicate alarm conditions.

<output_bit>
Bit position within the digital output port for signaling alarms.
WORD CONSTANT

<reset>
An integer specifying output mode and a time interval in milliseconds.
WORD CONSTANT | LONG CONSTANT

Description
ALARMALARMALARMALARM reads data values from <in_pipe>. When it observes an input value that satisfies the <region> condition,
it sets the output level of bit <output_bit> on the specified <output_port> to active high. The tested input
data stream can be any basic data type. The two bound numbers of the <region> specification (see the
“Introduction to DAPL” chapter) must match the data type of the tested input data pipe.

If you do not have digital expansion, specify digital port 0 to send the output directly to the digital connector on
the Data Acquisition Processor board. If you are using digital expansion, specify the configured port address of the
connector on the expansion board.

The <output_bit> position 0 is the least significant bit, and bit 15 is the most significant bit. For compatibility
with older hardware, omit the <output_port> parameter, and set <output_bit> equal to 16 * port address +
bit position.

The <reset> parameter specifies the output mode. There are three cases.

1. If the <reset> parameter is 0, or omitted, the output has a tracking behavior. The duration of the alarm
output is indeterminate, but when the alarm condition is no longer present the <output_bit> value is
returned to inactive low.

2. If the <reset> parameter is negative, the output has a one-shot behavior. Alarm conditions remain until
the system is restarted.

Chapter 19 DAPL Commands: ALARM 151

3. If the <reset> parameter is positive, the output has a pulsed behavior. The active-on condition is held
for at least the number of milliseconds specified by the <reset> parameter value. Due to uncertainties
of task scheduling, the exact duration is indeterminate.

In conditions of high data traffic, the ALARMALARMALARMALARM task will receive data in blocks. It must respond in real time as
quickly as possible, so any event within a received block of samples will produce an alarm output immediately.
However, the alarm conditions could occur multiple times in one received block, and only one alarm action
results. ALARMALARMALARMALARM is not suitable for counting events.

During the times that an alarm event is posted, new data are received and discarded without processing. This
avoids a data backlog that could interfere with other processing.

Examples

ALARM (P1, 1, OUTSIDE,0,1000, 5)

If a value from pipe P1 is outside the range 0 to 1000, bit 5 on digital expansion port 1 is set active high. The
digital bit returns to inactive low when the input level no longer satisfies the alarm condition.

ALARM (P1, 1, OUTSIDE,0,1000, 5, 10)
The same as the previous example, except that the duration of output alarm signals is guaranteed to be at least 10
milliseconds.

See Also
DIGITADIGITADIGITADIGITALOUTLOUTLOUTLOUT, LIMITLIMITLIMITLIMIT

152 Chapter 19 DAPL Commands: AVERAGE

AVERAGE

Define a task that computes the arithmetic mean of a group of samples.

AVERAGE (<in_pipe>, <count>, <out_pipe>)

Parameters
<in_pipe>

Input data pipe.
WORD PIPE | LONG PIPE | FLOAT PIPE | DOUBLE PIPE

<count>
The number of samples from which the arithmetic mean is computed.
WORD CONSTANT | LONG CONSTANT

<out_pipe>
Output pipe for the averaged data.
WORD PIPE | LONG PIPE | FLOAT PIPE | DOUBLE PIPE

Description
AVERAGEAVERAGEAVERAGEAVERAGE computes the arithmetic mean of <count> samples. Data values are received from <in_pipe> and
results are sent to <out_pipe>. AVERAGEAVERAGEAVERAGEAVERAGE is useful for data compression and noise reduction. The data types for
the input and output pipes must match.

Examples

AVERAGE (IPIPE0, 10, PAVG)

Average groups of 10 values from input channel pipe 0 and send the averages to pipe PAVG.

AVERAGE (PAVG, 4, P3)
Average groups of 4 values from pipe PAVG and send the averages to pipe P3.

See Also
BAVERAGEBAVERAGEBAVERAGEBAVERAGE, FIRFILTERFIRFILTERFIRFILTERFIRFILTER, RAVERAGERAVERAGERAVERAGERAVERAGE

Chapter 19 DAPL Commands: BAVERAGE 153

BAVERAGE

Define a task that computes multiple arithmetic means for multiplexed data.

BAVERAGE (<in_pipe>, <nchannels>, <mblocks>, <out_pipe>)

Parameters
<in_pipe>

Input data pipe.
WORD PIPE | LONG PIPE | FLOAT PIPE | DOUBLE PIPE

<nchannels>
The number of values in a block.
WORD CONSTANT | LONG CONSTANT

<mblocks>
The number of blocks of data to be averaged.
WORD CONSTANT | LONG CONSTANT

<out_pipe>
Output pipe for averaged data blocks.
WORD PIPE | LONG PIPE | FLOAT PIPE | DOUBLE PIPE

Description
<nchannels> and <mblocks> are positive nonzero integers. <nchannels> indicates the number of values
(channels) in the multiplexed block. BAVERAGEBAVERAGEBAVERAGEBAVERAGE reads <mblocks> blocks, averages corresponding points in the
blocks, and puts one block of multiplexed averages into <out_pipe>. For every <nchannels>*<mblocks>
values read, <nchannels> values are put into <out_pipe>.

Some common applications of BAVERAGEBAVERAGEBAVERAGEBAVERAGE are

• reducing random noise,
• statistical averaging data from multiple channels in parallel,
• reducing noise in FFT power spectra.

Example

BAVERAGE (P1, 100, 5, P2)

Read 5 blocks of 100 values, average corresponding values in the blocks, and send the 100 averages to pipe P2.

See Also
RAVERAGERAVERAGERAVERAGERAVERAGE, WAITWAITWAITWAIT

154 Chapter 19 DAPL Commands: BMERGE

BMERGE

Define a task that merges equal-size blocks of data.

BMERGE (<in_pipe_0>, ... , <in_pipe_n-1>, <blocksize>,
 <out_pipe>)

Parameters
<in_pipe_0>

First input data pipe.
WORD PIPE | LONG PIPE | FLOAT PIPE | DOUBLE PIPE

<in_pipe_n-1>
Last input data pipe.
WORD PIPE | LONG PIPE | FLOAT PIPE | DOUBLE PIPE

<blocksize>
A number that specifies the length of the data blocks.
WORD CONSTANT | LONG CONSTANT

<out_pipe>
Output pipe for merged data blocks.
WORD PIPE | LONG PIPE | FLOAT PIPE | DOUBLE PIPE

Description
BMERGEBMERGEBMERGEBMERGE reads blocks of length <blocksize> sequentially from pipes <in_pipe_0>, <in_pipe_1>, … ,
<in_pipe_n-1>, and writes the blocks to <out_pipe>. For blocked data, such as the outputs of WAITWAITWAITWAIT or FFTFFTFFTFFT
tasks, BMERGEBMERGEBMERGEBMERGE is more efficient than MERGEMERGEMERGEMERGE, because data are processed in groups rather than individually, without
any sdata conversion.

The data types of pipes <in_pipe_0>, <in_pipe_1> etc., and pipe <out_pipe> must all be the same. The
maximum size of <blocksize> is 32768. There can be up to 64 data source pipes. Very larger block sizes could
result in data transfer inefficiency.

BMERGEBMERGEBMERGEBMERGE should be used only when <in_pipe_0>, <in_pipe_1>, … , <in_pipe_n-1>, are filled at the same
rate. Otherwise, BMERGEFBMERGEFBMERGEFBMERGEF should be used.

Example

BMERGE (P1, P2, P3, P4, 1024, $BinOut)

Read blocks of 1024 data values sequentially from the four data pipes P1, P2, P3, and P4, in sequence, and send
the blocks to the PC through $BinOut.

See Also
BMERGEFBMERGEFBMERGEFBMERGEF, MERGEMERGEMERGEMERGE, MERGEFMERGEFMERGEFMERGEF, NMERGENMERGENMERGENMERGE, SEPARATESEPARATESEPARATESEPARATE, SEPARATEFSEPARATEFSEPARATEFSEPARATEF

Chapter 19 DAPL Commands: BMERGEF 155

BMERGEF

Define a task that merges blocks of data, adding a flag before each block.

BMERGEF (<in_pipe_0>, ... , <in_pipe_n-1>, <blocksize>,
 <out_pipe>)

Parameters
<in_pipe_0>

First input data pipe.
WORD PIPE | LONG PIPE | FLOAT PIPE | DOUBLE PIPE

<in_pipe_n-1>
Last input data pipe.
WORD PIPE | LONG PIPE | FLOAT PIPE | DOUBLE PIPE

<blocksize>
A number that represents the length of the data blocks.
WORD CONSTANT | LONG CONSTANT

<out_pipe>
Output pipe for merged blocks of data.
WORD PIPE | LONG PIPE | FLOAT PIPE | DOUBLE PIPE

Description
BMERGEFBMERGEFBMERGEFBMERGEF merges blocks of equal size from <in_pipe_0>, <in_pipe_1>, … , <in_pipe_n-1> to
<out_pipe>, adding an identifying flag before each block. Though the block size is fixed, the order in which the
blocks will arrive in the destination <out_pipe> is indeterminate. For blocked data, such as the outputs of WAITWAITWAITWAIT
or FFTFFTFFTFFT tasks, BMERGEFBMERGEFBMERGEFBMERGEF is more efficient than MERGEFMERGEFMERGEFMERGEF.

Data may be of any data type, but the data types of all source pipes and the destination pipe must match.

BMERGEFBMERGEFBMERGEFBMERGEF scans through <in_pipe_0>, <in_pipe_1>, … , <in_pipe_n-1>. If a pipe contains at least
<blocksize> values, BMERGEFBMERGEFBMERGEFBMERGEF writes an identifying flag to <out_pipe>. The identifying flag is a number from
0 to n-1, converted to the data type of the <out_pipe>. BMERGEFBMERGEFBMERGEFBMERGEF then reads <blocksize> values from the
identified source pipe and writes those values to <out_pipe>. Block sizes must be 16384 or shorter.

A software application program receiving data from BMERGEFBMERGEFBMERGEFBMERGEF should read a tag items to determine the source pipe
identity and then read <blocksize> values.

156 Chapter 19 DAPL Commands: BMERGEF

Example

BMERGEF (P1, P2, P3, P4, 1024, $BinOut)

Read blocks of 1024 data values from pipes P1, P2, P3, and P4 as the data become available. Place an identifying
flag before each block, and send the blocks to the PC host.

See Also
BMERGEBMERGEBMERGEBMERGE, MERGEMERGEMERGEMERGE, MERGEFMERGEFMERGEFMERGEF, SEPARATEFSEPARATEFSEPARATEFSEPARATEF

Chapter 19 DAPL Commands: BOUND 157

BOUND

Define a task that limits values in a data stream to a range.

BOUND (<in_pipe1>, <low_bound>, <high_bound>, <out_pipe>)

Parameters
<in_pipe>

Input data pipe.
WORD PIPE | LONG PIPE | FLOAT PIPE | DOUBLE PIPE

<low_bound>
Lower limit of the value range.
WORD CONSTANT | LONG CONSTANT | FLOAT CONSTANT | DOUBLE CONSTANT
WORD VARIABLE | LONG VARIABLE | FLOAT VARIABLE | DOUBLE VARIABLE

<high_bound>
Upper limit of the value range.
WORD CONSTANT | LONG CONSTANT | FLOAT CONSTANT | DOUBLE CONSTANT
WORD VARIABLE | LONG VARIABLE | FLOAT VARIABLE | DOUBLE VARIABLE

<out_pipe>
Output pipe.
WORD PIPE | LONG PIPE | FLOAT PIPE | DOUBLE PIPE

Description
BOUNDBOUNDBOUNDBOUND enforces range limits on the values taken from the <in_pipe> source.

• Values greater than or equal to <high_bound> are replaced by <high_bound>.

• Values less than or equal to <low_bound> are replaced by <low_bound>.

• Values within the range are unchanged.

After enforcing the range limits, the results are placed into output pipe <out_pipe>. The data types must be the
same on all parameters.

Example

BOUND (P1, 0.0, 25000.0, P3)

Read the values from pipe P1, and adjust values that are beyond the range limits 0.0 to 25000.0 to the nearest
range limit. Place the adjusted values into pipe P3.

158 Chapter 19 DAPL Commands: BUFFERS

BUFFERS

Specify the input buffer mode of an input configuration.

BUFFERS <type>

Parameters
<type>

A keyword.
STATIC | DYNAMIC

Description
BUFFERS specifies the input buffer mode of an input configuration. <type> is STATIC or DYNAMIC. The default
mode is DYNAMIC.

In DYNAMIC input buffer mode, a system task allocates input buffers for an input configuration on demand. The
memory used by buffers in the input configuration grows and shrinks dynamically. This is the normal input buffer
mode and is appropriate for almost all applications.

In STATIC input buffer mode, DAPL pre-allocates a certain number of input buffers for an input configuration.
Input processing cycles through these buffers continuously until the input configuration stops or an overflow
occurs.

Example

BUFFERS STATIC

For a configuration that operates upon small data blocks on a regular schedule, set the buffer mode to STATIC in the
input procedure, to slightly reduce worst-case buffer management latency.

Chapter 19 DAPL Commands: CALIBRATE 159

CALIBRATE

Calibrate the Data Acquisition Processor input sampling hardware.

CALIBRATE [<STORE | NOSTORE>]

Parameters
<STORE>

Store calibration values to onboard nonvolatile memory.

<NOSTORE>
Do not store calibration values to onboard nonvolatile memory. This is the default if not specified.

Description
For Data Acquisition Processor models that support self-calibration, the CALIBRATECALIBRATECALIBRATECALIBRATE system command issues a
DAPL RESETRESETRESETRESET and then initiates a Data Acquisition Processor hardware calibration session. The calibration session
may last a few seconds. While the calibration is in progress, the DAPL interpreter is suspended until the
calibration is complete.

When the DAPL operating system is loaded, calibration values are loaded from the onboard nonvolatile memory.
If you want to store a new set of calibration values, specify the option STORE on the CALIBRATECALIBRATECALIBRATECALIBRATE command line.
After calibration, the Data Acquisition Processor will use the computed range and offset adjustments until the next
time the Data Acquisition Processor is powered up, or the next time that the DAPL operating system is loaded. If
you do not specify any option, the default option is NOSTORE.

As shipped from the factory, calibration values are already stored on the onboard nonvolatile memory.

The onboard nonvolatile memory allows a limited number of write cycles, on the order of a million. For repeated
calibrations, use the NOSTORE option.

See Also
RESETRESETRESETRESET

160 Chapter 19 DAPL Commands: CANGLE

CANGLE

Define a task that computes the phase angle of complex values.

CANGLE (<in_pipe1>, <in_pipe2>, <out_pipe>)

Parameters
<in_pipe1>

First input data pipe for real-valued terms.
WORD PIPE | LONG PIPE | FLOAT PIPE | DOUBLE PIPE

<in_pipe2>
Second input data pipe for imaginary-valued terms.
WORD PIPE | LONG PIPE | FLOAT PIPE | DOUBLE PIPE

<out_pipe>
Output data pipe.
WORD PIPE | LONG PIPE | FLOAT PIPE | DOUBLE PIPE

Description
CANGLECANGLECANGLECANGLE computes the phase angle of complex numbers, with real parts taken from pipe <in_pipe1> and
imaginary parts taken from <in_pipe2>. This operation is equivalent to performing a four-quadrant arctangent
function such as atan2(y,x) in the C, Pascal, or FORTRAN programming languages. The result is placed into
<out_pipe>. The input and output data streams must all be the same data type.

The output values are angles in the range of –pi to +pi. Special representations are needed to represent this
numerical range with fixed-point numbers. See the discussion of the POLARPOLARPOLARPOLAR command.

Note: The phase angles of complex numbers also can be computed using mode 6 of FFTFFTFFTFFT,,,, or by the POLARPOLARPOLARPOLAR
command.

Example

CANGLE (P1,P2,P3)

Read the real part x of a complex value from pipe P1 , and the imaginary part part y of the complex value from
pipe P2. Compute the phase angle tan-1(y/x) and place the result in pipe P3.

See Also
ABSABSABSABS, FFTFFTFFTFFT, POLARPOLARPOLARPOLAR

Chapter 19 DAPL Commands: CHANNELS (input sampling) 161

CHANNELS (input sampling)

Define the number of input channels in an input sampling configuration.

CHANNELS <nchannels>

Parameters
<nchannels>

The number of input channels to receive data samples.
WORD CONSTANT

Description
The CHANNELSCHANNELSCHANNELSCHANNELS command in an input procedure definition specifies the number of signal channels that will be
sampled when the input sampling is started. The characteristics of each channel will be specified later in the
configuration. The number of signal channels must be known before other configuration information can be
processed. The CHANNELSCHANNELSCHANNELSCHANNELS command should appear as one of the first commands following the IDEFINEIDEFINEIDEFINEIDEFINE
command.

Usually, each channel specified by the CHANNELSCHANNELSCHANNELSCHANNELS command will be associated with a signal pin, by specifying
<nchannels> number of SETSETSETSET commands. However, a configuration will sometimes omit declarations of some of
these channels. For example, artificial channels might be included in the sequence for purposes of aligning the
samples at certain specific time intervals, and since no samples will be processed for these particular time
intervals, the associated SETSETSETSET commands are omitted. All channels occupy memory whether or not an external
signal pin is assigned, and whether or not any data processing uses the signal channel.

The GROUPSGROUPSGROUPSGROUPS command is similar to the CHANNELSCHANNELSCHANNELSCHANNELS command, except that the GROUPSGROUPSGROUPSGROUPS command configures
sampling for Data Acquisition Processor models that sample multiple signal pins simultaneously.

Example

IDEFINE INP4
 CHANNELS 4
 SET IP0 D0
 SET IP1 D1
 SET IP2 D0
 SET IP3 G
 TIME 25
END

Configure the input sampling to capture data for four signal channels, on a Data Acquisition Processor model that
samples signal pins individually. The total number of input data channels is four, but there are only two unique
hardware signal paths. The last channel is not used for any data processing, but it is present only to preserve an
even 100 microsecond timing interval for capturing the channel list set.

162 Chapter 19 DAPL Commands: CHANNELS (input sampling)

See Also
SETSETSETSET, GROUPSGROUPSGROUPSGROUPS, IDEFINEIDEFINEIDEFINEIDEFINE

Chapter 19 DAPL Commands: CHANNELS (output updating) 163

CHANNELS (output updating)

Define the number of output channels in an output updating configuration.

CHANNELS <nchannels>

Parameters
<nchannels>

The number of output channels to receive clocked updates.
WORD CONSTANT

Description
In an output procedure for a Data Acquisition Processor, the CHANNELSCHANNELSCHANNELSCHANNELS command must be specified to configure
the number of output channels that will receive updates.

An output configuration needs to know the number of signal channels before it can process other configuration
information. The CHANNELSCHANNELSCHANNELSCHANNELS command should appear as one of the first commands following the ODEFINEODEFINEODEFINEODEFINE
command. Each of the <nchannels> output channels specified by the CCCCHANNELSHANNELSHANNELSHANNELS command must be assigned a
destination hardware signal pin.

Example

ODEFINE Outp2
 CHANNELS 2
 SET IP0 A0
 SET IP1 B0
 TIME 500
END

Configure an output updating procedure that will deliver data samples to output signals: one analog output channel
and one digital port channel.

See Also
SETSETSETSET, CHANNELSCHANNELSCHANNELSCHANNELS, ODEFINEODEFINEODEFINEODEFINE

164 Chapter 19 DAPL Commands: CHIRP

CHIRP

Define a task to generate a swept cosine waveform.

CHIRP (<sweep>, <direction>, <amplitude>, <cycle>, <periodL>, <periodH>,
<phase0>, \
 <outpipe>)

Parameters
<sweep>

Frequency sweep function selection.
STRING

<direction>
Uni-directional or bi-directional sweep selection.
STRING

<amplitude>
Amplitude of waveform.
WORD CONSTANT | LONG CONSTANT | FLOAT CONSTANT | DOUBLE CONSTANT

<cycle>
Number of samples to cover one full sweep cycle.
WORD CONSTANT | LONG CONSTANT

<periodL>
Period of cosine waveform at initial sweep frequency.
WORD CONSTANT | LONG CONSTANT

<periodH>
Period of cosine waveform at final sweep frequency.
WORD CONSTANT | LONG CONSTANT

<phase0>
Initial phase angle of cosine waveform.
FLOAT CONSTANT | DOUBLE CONSTANT

<outpipe>
A data pipe where samples of the swept frequency waveform are placed.
WORD PIPE | LONG PIPE | FLOAT PIPE | DOUBLE PIPE

Description
CHIRPCHIRPCHIRPCHIRP generates a frequency-modulated cosine waveform in pipe <outpipe>, where the <sweep> identifier
specifies the kind of function used to vary the frequency. It must be one of the following strings:

• “LINEAR” (abbreviation “LIN”)
Frequency increases proportionally to time

• “QUADRATIC” (abbreviation “QUAD”)
Frequency increases with the square of time

Chapter 19 DAPL Commands: CHIRP 165

• “LOGARITHMIC” (abbreviation “LOG”)
Frequency increases with time as an exponent

The sweep is repeated, with each sweep generating <cycle> samples.

You can specify an arbitrary starting phase angle <phase0> for the cosine waveform, in radians. To get a swept
cosine wave, specify 0.0 as the initial phase angle. To get a swept sine wave (starting at signal level 0.0),
specify a phase angle of -1.5707963 (equal to -pi/2).

The frequencies are characterized by their periods, i.e., the number of samples to span a complete cosine wave
cycle. The low frequency range for the sweep is specified by <periodL> and the high frequency range is
specified by <periodH>, subject to the restriction that <periodL> and <periodH> must be 2 or greater to
remain below the theoretical Nyquist limit for sampled data. Ordinarily, <periodL> and <periodH> will not
exceed the length of <cycle>.

Most applications sweep from low frequency to high. A sweep from high frequency to low can be obtained by
making <periodH> longer than <periodL>.

During each cycle, the <direction> parameter determines how the frequency is swept.

• “UNIDIRECTIONAL” (abbreviation “UNI”). The sweep goes smoothly between <periodL> and
<periodH>, in the manner of a sawtooth shape, jumping back to the initial frequency to begin the next
cycle.

• “BIDIRECTIONAL” (abbreviation “BI”). The sweep goes smoothly between <periodL> and
<periodH>, then smoothly back again during each cycle, in the manner of a triangle shape.

Waveforms are evaluated by taking the function for generating the current frequency, as determined by the
<sweep> type, and integrating it to obtain the current argument to the cosine function. After evaluation, the
waveform sample is scaled according to the <amplitude> parameter, which specifies the peak level of the signal
in the data type of the desired output signal. Scaled values are placed into <outpipe>.

Note: It is not possible to meet the constraints of initial sweep frequency, final sweep frequency, and initial phase
angle, while also meeting the constraint that the final phase angle matches the initial phase angle. A step
discontinuity can occur between sweep cycles, particularly when using bi-directional sweeps. Possible solutions:
(1) discard response data corresponding to the sweep discontinuity or (2) adjust the sweep cycle length up or down
slightly to reduce the magnitude of the phase discontinuity.

Example
 CHIRP(“linear”, “unidirectional”, 32767, 4000, 800, 8, 0.0, PSWEEP)

Generate a repeating swept cosine wave “chirp” of maximum amplitude 32767 that will fit into WORD output pipe
PSWEEP. Each full sweep covers 4000 samples. The period at the initial frequency is 800 samples, meaning that
there would be five full waveform cycles if the frequency stayed at the initial frequency. The frequency changes
linearly with time, and increases until the period of the final frequency is 8 samples per cycle, 25% of the
theoretical Nyquist sampling limit. The sweep is uni-directional, so each sweep begins again with the frequency
returning to an 800-sample period.

See Also
COSINEWAVCOSINEWAVCOSINEWAVCOSINEWAVEEEE, RANDOMRANDOMRANDOMRANDOM

166 Chapter 19 DAPL Commands: CLCLOCKING

CLCLOCKING

Set the channel list clocking mode of an input or output configuration.

CLCLOCKING <switch>

Parameters
<switch>

A keyword.
ON | OFF

Description
CLCLOCKINGCLCLOCKINGCLCLOCKINGCLCLOCKING sets the channel list clocking mode of an input configuration or an output configuration. <switch>
is ON or OFF. If the mode is ON, a positive clock edge initiates a sampling sequence for a complete channel list. If
the mode is OFF, CLCCLCCLCCLCLOCKINGLOCKINGLOCKINGLOCKING converts a single channel or channel group on the positive edge of the clock. The
default value is ON. See the Data Acquisition Processor hardware documentation for more information about
channel list clocking.

Note: For Data Acquisition Processor models that have simultaneous sampling, all samples in an input channel
group are sampled simultaneously.

Example

CLCLOCKING OFF

Turn channel list clocking off.

See Also
CLOCK for inputCLOCK for inputCLOCK for inputCLOCK for input, CLOCK for outputCLOCK for outputCLOCK for outputCLOCK for output, HTRIGGER for inputHTRIGGER for inputHTRIGGER for inputHTRIGGER for input, HTRIGGER for outputHTRIGGER for outputHTRIGGER for outputHTRIGGER for output

Chapter 19 DAPL Commands: CLOCK (input sampling) 167

CLOCK (input sampling)

Select the source of the input configuration sample clock.

CLOCK <source>

Description
CLOCKCLOCKCLOCKCLOCK specifies the clock source used by an input sampling configuration. <source> can be INTERNAL or
EXTERNAL. The default <source> is INTERNAL. The clock options are described in the hardware documentation.

Example

CLOCK EXTERNAL

Specify that the clock source is the external input clocking pin.

See Also
CLCLOCKINGCLCLOCKINGCLCLOCKINGCLCLOCKING, HTRIGGERHTRIGGERHTRIGGERHTRIGGER

168 Chapter 19 DAPL Commands: CLOCK (output updating)

CLOCK (output updating)

Select the source of the output configuration sample clock.

CLOCK <source>

Description
CLOCKCLOCKCLOCKCLOCK specifies the clock source used by an output configuration. <source> is INTERNAL or EXTERNAL. The
default <source> is INTERNAL. The clock options are described in the hardware documentation.

Example

CLOCK EXTERNAL

Specify that the clock source is the external output clocking pin.

See Also
CLCLOCKINGCLCLOCKINGCLCLOCKINGCLCLOCKING, HTRIGGERHTRIGGERHTRIGGERHTRIGGER

Chapter 19 DAPL Commands: CMAG 169

CMAG

Define a task that computes the magnitude (absolute value) of complex values.

CMAG (<in_pipe1>, <in_pipe2>, <out_pipe>)

Parameters
<in_pipe1>

First input data pipe for real-valued terms.
WORD PIPE | LONG PIPE | FLOAT PIPE | DOUBLE PIPE

<in_pipe2>
Second input data pipe for imaginary-valued terms.
WORD PIPE | LONG PIPE | FLOAT PIPE | DOUBLE PIPE

<out_pipe>
Output data pipe.
WORD PIPE | LONG PIPE | FLOAT PIPE | DOUBLE PIPE

Description
CMAGCMAGCMAGCMAG computes the absolute values of complex numbers, with real parts taken from pipe <in_pipe1> and
imaginary parts taken from <in_pipe2>. To compute each value, corresponding input terms from the two source
pipes are squared and summed. The square root is taken and the result is placed into <out_pipe>. The input and
output data streams must all be the same data type.

When using large fixed-point numbers, the result can be too large to represent in the output data type, and in such
a case, the output value is saturated to the largest representable value. When using small fixed-point numbers,
there are very few bits in the number representation and the truncation of the final square root operation can be
significant. Numerical problems such as these can be avoided by converting data to floating point with a DAPL
expression before applying this operation.

Note: The magnitudes of complex numbers also can be computed using modes 5 or 6 of FFTFFTFFTFFT,,,, or by the POLARPOLARPOLARPOLAR
command.

Example

CMAG (P1,P2,P3)

Read the real part of a complex value from pipe P1, and the imaginary part of the complex value from pipe P2.
Compute the absolute value of the complex number and place the result in pipe P3.

See Also
ABSABSABSABS, FFTFFTFFTFFT, POLARPOLARPOLARPOLAR

170 Chapter 19 DAPL Commands: COMPRESS

COMPRESS

Define a task that encodes data having infrequent changes.

COMPRESS (<in_pipe>, <n> [, <threshold>]*, <out_pipe>)

Parameters
<in_pipe>

Input data pipe.
WORD PIPE

<n>
A positive constant, less than or equal to 16, specifying the number of data streams read from <in_pipe>.
WORD CONSTANT

<threshold>
A number or sequence of numbers that represents the threshold value for which
to report changes.
WORD CONSTANT | WORD VARIABLE

<out_pipe>
Output pipe for encoded data blocks.
WORD PIPE

Description
COMPRESSCOMPRESSCOMPRESSCOMPRESS encodes data in which changes occur infrequently. COMPRESSCOMPRESSCOMPRESSCOMPRESS can monitor a single data stream or a
multiplexed data stream such as an input channel pipe list. COMPRESSCOMPRESSCOMPRESSCOMPRESS takes data from <in_pipe> one value at a
time, and compares that value to the corresponding value previously reported for the same stream. If the absolute
difference is greater than or equal to the <threshold> parameter for that stream, a data block containing the new
value is placed into <out_pipe>. Otherwise the data value is discarded. Output data blocks are always generated
to report the first value from each input stream.

The first parameter <in_pipe> specifies one or more data streams. The first parameter typically is an input
channel pipe list, but it can be any data pipe with multiplexed data.

The second parameter <n> is a positive constant, less than or equal to 16, specifying the number of data streams
read from <in_pipe>. If <in_pipe> is an input channel pipe list, <n> must be equal to the number of input
channel pipes. For a single pipe, <n> must be 1. The data streams from the input pipe are numbered 0 through
<n>-1.

Either one or multiple <threshold> parameters must appear next in the parameter list. Each <threshold> value
is a nonnegative value. If a single <threshold> parameter is specified, it will apply to each stream in the input
pipe list. If more than one <threshold> parameter is specified, there must be one <threshold> parameter for
each of the <n> multiplexed data streams, in sequence.

Each change report written to <out_pipe> contains three values. The first value is a 16-bit integer from 0 to <n>-
1, specifying the stream from which the threshold value was exceeded. A zero indicates the first stream, a 1
indicates the second stream, and so on. The second value is the new 16-bit input data value. The last field is a 32-

Chapter 19 DAPL Commands: COMPRESS 171

bit unsigned integer specifying the sample number of the new value, where the data are counted in one channel
starting from sample number 0.

Examples

COMPRESS (IP0, 1, 100, P1)

Send data block to pipe P1 when input values change by more than 100.

COMPRESS (IPIPES(0,1,2), 3, 64, 64, 1000, P1)

Send data block if input channel pipe 0 or 1 changes by more than 64 or if input channel pipe 2 changes by more
than 1000.

See Also
AVERAGEAVERAGEAVERAGEAVERAGE, LIMITLIMITLIMITLIMIT

172 Chapter 19 DAPL Commands: CONSTANTS

CONSTANTS

Define a shared constant data element.

CONSTANTS <name> <type> = <value>
[, <name> <type> = <value>]*

CONSTANT <name> <type> = <value>
[, <name> <type> = <value>]*

CONST <name> <type> = <value>
[, <name> <type> = <value>]*

Parameters
<name>

An assigned name.

<type>
Keyword for data type of the new constant symbol.
WORD | LONG | FLOAT | DOUBLE

<value>
The value assigned to the constant.
WORD CONSTANT | WORD VARIABLE |
LONG CONSTANT | LONG VARIABLE |
FLOAT CONSTANT | FLOAT VARIABLE |
DOUBLE CONSTANT | DOUBLE VARIABLE

Description
CONSTANTSCONSTANTSCONSTANTSCONSTANTS creates symbols for representing numbers that have a consistent meaning in a DAPL configuration.
This command can be used to associate an intuitive name with a number used repeatedly in a DAPL command list,
allowing all occurrences of the number to be reconfigured by changing only the CONSTANTSCONSTANTSCONSTANTSCONSTANTS declaration.

The assigned <type> determines the numeric format and precision of the constant. The <value> specifier assigns
a value to the named constant. Floating point variables and constants cannot be used to assign a value to a WORD or
LONG constant, but otherwise, any constant or variable is acceptable if it provides a value in the representable
range.

Unlike VARIABLESVARIABLESVARIABLESVARIABLES, for which values shared by tasks can change at any time, the values of CONSTANTSCONSTANTSCONSTANTSCONSTANTS do not
change while a DAPL configuration runs. While no configurations are active, a constant symbol value can be
reconfigured using the LETLETLETLET command. However, this must be done carefully. A constant symbol is evaluated when
items using it are initialized. For tasks, the evaluation occurs at task creation, as the configuration starts. For other
system elements, the evaluation occurs when the configuration is downloaded to the DAPL system. See the LETLETLETLET
command for more information.

If the data type specification is omitted, the data type of the constant defaults to WORD, and the initializer
expression must be compatible with WORD data type.

Chapter 19 DAPL Commands: CONSTANTS 173

Example

CONSTANT NCHANNELS WORD = 12

Define the symbol NCHANNELS to have the 16-bit value 12.

See Also
VARIABLESVARIABLESVARIABLESVARIABLES, LETLETLETLET, SDISPLAYSDISPLAYSDISPLAYSDISPLAY

174 Chapter 19 DAPL Commands: COPY

COPY

Define a task that transfers data from an input pipe to one or more output pipes.

COPY (<in_pipe>, <out_pipe_1>, ... , <out_pipe_n>)

Parameters
<in_pipe>

Input data pipe.
WORD PIPE | LONG PIPE | FLOAT PIPE | DOUBLE PIPE

<out_pipe_1>
First output pipe for copied data.
WORD PIPE | LONG PIPE | FLOAT PIPE | DOUBLE PIPE

<out_pipe_n>
Last output pipe for copied data.
WORD PIPE | LONG PIPE | FLOAT PIPE | DOUBLE PIPE

Description
COPYCOPYCOPYCOPY transfers values from <in_pipe> to one or more output pipes. Up to 64 output pipes are allowed. The data
types of the <in_pipe> and <out_pipe> parameters must all match.

A COPYCOPYCOPYCOPY task can be used to circumvent the restriction that data-reading tasks for one pipe must all be in the same
start group. The COPYCOPYCOPYCOPY command can produce an independent copy of a data stream. A task in another start group
can then read that copy.

Example

COPY (P1, P2, P3, P4)

Copy each value from pipe P1 to pipes P2, P3, and P4.

See Also
COPYVECCOPYVECCOPYVECCOPYVEC, MERGEMERGEMERGEMERGE

Chapter 19 DAPL Commands: COPYVEC 175

COPYVEC

Define a task that continuously copies data from a vector to a pipe.

COPYVEC (<vector>, <out_pipe>)

Parameters
<vector>

Input vector.
WORD VECTOR | LONG VECTOR | FLOAT VECTOR | DOUBLE VECTOR

<out_pipe>
Output data pipe.
WORD PIPE | LONG PIPE | FLOAT PIPE | DOUBLE PIPE

Description
COPYVECCOPYVECCOPYVECCOPYVEC continuously copies data from a vector to a pipe. This is used to generate repetitive waveforms or other
specialized test signals. The data types of the pipe and the vector must match.

Example

VECTOR VF FLOAT = (1.0, 2.0, 3.0, 4.0)
COPYVEC (VF, P)

Repeatedly place copies of the values 1, 2, 3, 4 into pipe P.

See Also
COPYCOPYCOPYCOPY, VECTORVECTORVECTORVECTOR

176 Chapter 19 DAPL Commands: CORRELATE

CORRELATE

Define a task that computes cross correlation between blocks of data using spectral methods.

CORRELATE (<p1>, <p2>, <scaling>, <bsize>, <lead>, <lag>, <window>,
 <p3>)

Parameters
<p1>

Input data pipe for the first block of samples.
WORD PIPE | LONG PIPE | FLOAT PIPE | DOUBLE PIPE

<p2>
Input data pipe for the second block of samples.
WORD PIPE | LONG PIPE | FLOAT PIPE | DOUBLE PIPE

<scale>
A final scaling divisor to apply to each term.
WORD CONSTANT | LONG CONSTANT | FLOAT CONSTANT | DOUBLE CONSTANT

<bsize>
The size of data blocks processed from input streams.
WORD CONSTANT

<lead>
The maximum lead time, expressed as a positive number of sample intervals.
WORD CONSTANT

<lag>
The maximum lag time, expressed as a positive number of sample intervals.
WORD CONSTANT

<window>
A parameter that specifies an FFT window operation.
WORD CONSTANT |
WORD VECTOR | LONG VECTOR | FLOAT VECTOR | DOUBLE VECTOR

<p3>
Output pipe for correlation values.
WORD PIPE | LONG PIPE | FLOAT PIPE | DOUBLE PIPE

Description
CORRELATECORRELATECORRELATECORRELATE computes cross correlation between blocks of data from <p1> and <p2> using spectral methods.
Correlation is a way of measuring a degree of similarity between two data streams.

In general, to compute a value of correlation at a time shift of T samples, a block of consecutive values are taken
from <p1> and an equal sized block of consecutive values are taken from <p2>, where the samples in the block
from <p2> begin T sampling intervals after the block from <p1>. If T is positive, the data from <p2> is said to lag
the data from <p1>, and if T is negative, the data from <p2> is said to lead the data from <p1>. To obtain the

Chapter 19 DAPL Commands: CORRELATE 177

correlation at this lead or lag, corresponding pairs of values from the two data blocks are multiplied, and the
resulting terms are averaged.

The range limits for the time shift T are specified by the <lead> and <lag> parameters, which are both non-
negative. The time shift T is adjusted over the range from <lead> to <lag>, and correlation is computed at each
shift. For each pair of input data blocks, <lead> + <lag> + 1 computed correlation values are placed into output
pipe <p3>, starting with the correlation result for the greatest lead and continuing to the correlation result for the
greatest lag.

The correlation calculations are equivalent to a convolution operation, and an FFT is used to compute the
convolution efficiently. The FFT block size <bsize> used for the correlation analysis must be greater than
<lead> + <lag> + 1 items, and must be an exact power of 2 no greater than the largest block size supported by
the FFTFFTFFTFFT command. There is a tradeoff between statistical significance and locality. For effects with localized short
term correlation, a longer block will obscure the results by including more noise in the analysis, but for more
persistent correlations, a longer block will improve the accuracy of the estimates.

For highly correlated data, the magnitude of the correlation is approximately the square of the magnitude of the
data terms, and for some data types this can lead to unrepresentable values. To avoid this, a <scale> parameter is
provided. In previous versions of the DAPL system, the scale divisor was fixed at 16384. If a value of 0 or 16384
is specified, the scaling will be the same as before. For effects that are less strongly correlated, a lower scaling
factor might preserve more bits of precision. When using floating point data, scaling is seldom a problem, and the
scaling divisor can be set to 1.0 or to any other useful value. The scaling divisor type must match the processed
data type.

<window> specifies a window operation. The CORRELATECORRELATECORRELATECORRELATE command accepts the same pre-defined window codes
or user-defined window vectors as the FFTFFTFFTFFT command. See the description of the FFTFFTFFTFFT command for more
information about window operations for FFT analysis.

A typical application of CORRELATECORRELATECORRELATECORRELATE is finding the propagation delay time of a signal through a system. In this case
<p1> represents the input to the system, and <p2> represents the output from the system. The parameter <lead>
can be set to zero, because the signal cannot arrive before it is sent. Then the lag time at which the correlation is
highest represents the time for the signal to propagate from input to output.

Example

CORRELATE (P1, P2, 16384, 1024, 31, 32, 3, P3)

Calculate cross correlation between blocks of 1024 points taken from pipes P1 and P2, producing a block of
blocks of 64 points for each analysis. In each block of 64 results computed, the first 31 are for lead, the next term
is for no lead or lag, and the last 32 terms are for lag, in the order of greatest lead to greatest lag. Use a Bartlett
(triangular) window operation (code 3) for the FFT analysis. Place the results into pipe P3.

See Also
FFTFFTFFTFFT

178 Chapter 19 DAPL Commands: COSINEWAVE

COSINEWAVE

Define a task that generates cosine wave data.

COSINEWAVE (<amplitude>, <period>, <out_pipe>
[, <mod_type>, <mod_pipe] [, <mod_type>, <mod_pipe])

Parameters
<amplitude>

The absolute magnitude of the waveform peak.
WORD CONSTANT | LONG CONSTANT | FLOAT CONSTANT | DOUBLE CONSTANT

<period>
The number of sample values in each wave cycle.
WORD CONSTANT | LONG CONSTANT | FLOAT CONSTANT | DOUBLE CONSTANT

<out_pipe>
Output pipe for waveform data.
WORD PIPE | LONG PIPE | FLOAT PIPE | DOUBLE PIPE

<mod_type>
An optional modulation selector keyword.
STRING

<mod_pipe>
Pipe for a modulation signal, when a selector keyword is specified.
WORD PIPE | LONG PIPE | FLOAT PIPE | DOUBLE PIPE

Description
COSINEWAVECOSINEWAVECOSINEWAVECOSINEWAVE generates cosine wave data and places the data in <out_pipe>. The <period> is the number of
sample values in each wave cycle. The <amplitude> is the absolute magnitude (positive one half the peak to
peak range) of the output wave.

The <amplitude> does not have to match the output data type exactly, but it is restricted to representable values
of the output data type. For example, the integer 100000 would be valid as the amplitude for a float output
signal, but 61472133 would be invalid because it is not representable without rounding.

The cycle length specified by <period> is the number of samples for one complete waveform cycle. For fixed
point output data types, the cycle length must be a fixed point number. For floating point data types, the cycle
length does not need to be an exact integer, which means that it can produce frequencies that are not harmonically
related to the sampling frequency. Aribtrarily long values of <period> are allowed. The most efficient operation
is achieved using fixed point data and a fixed waveform length of 2048 terms or less.

Note: The COSINEWAVECOSINEWAVECOSINEWAVECOSINEWAVE is identical to SINEWAVESINEWAVESINEWAVESINEWAVE except for the phase of the signal.

There are two optional modulations. No modulation, one modulation option, or both modulation options can be
specified. Each modulation specification consists of a selector string, followed by a pipe name identifying the
modulation stream. The two modulation options are:

Chapter 19 DAPL Commands: COSINEWAVE 179

1. Amplitude modulation. Modulation type “AMPLITUDE”.
Values of the modulation signal multiply the corresponding values of the original waveform. For fixed-
point data types, the maximum representable value corresponds to a scaling factor of 1.0, and lower
values correspond to proportional fractions. For floating point data types, the modulation values are
arbitrary.

2. Frequency modulation. Modulation type “FREQUENCY”.
Values of the modulation signal act as a multiplier on the waveform frequency. For fixed-point data
types, the maximum representable value corresponds to a scaling factor of 1.0, and lower values
correspond to proportional fractions. For floating point data types, the modulation values are arbitrary but
typically will be in the range 0.0 to 1.0. For example, if the <period> is 500 and the values from the
frequency modulation pipe are all 0.5, the frequency is cut in half and the effect is the same as setting
<period> equal to 1000.

When applying modulation, one modulation value is used for each waveform value generated.

Examples

COSINEWAVE (1000, 100, P2)

Generate a cosine wave with values ranging from -1000 to 1000, with a period of 100 samples. Place the
waveform data into pipe P2.

COSINEWAVE (32767, 400, PMOD, “AMPLITUDE”, PAMPL)
Generate a cosine wave with output values ranging from –32767 to 32767, and with a cycle length 400. Apply
amplitude modulation, taking the multipliers from pipe PAMPL, and placing modulated waveform data into pipe
PMOD.

See Also
SAWTOOTHSAWTOOTHSAWTOOTHSAWTOOTH, SINEWAVESINEWAVESINEWAVESINEWAVE, SQUAREWAVESQUAREWAVESQUAREWAVESQUAREWAVE, TRIANGLETRIANGLETRIANGLETRIANGLE

180 Chapter 19 DAPL Commands: COUNT (for input sampling)

COUNT (for input sampling)

Specify the amount of data to collect during input sampling.

COUNT <sample_count>

Parameters
<sample_count>

An integer specifying the number of samples to collect before stopping.
WORD CONSTANT | LONG CONSTANT | extended sample count

Description
A COUNTCOUNTCOUNTCOUNT command is used in an input sampling configuration to stop sampling after a predetermined number of
samples. The <sample_count> parameter specifies the total number of samples collected in all input channels
before stopping. Divide <sample_count> by the number of input channels in the configuration to obtain the
number of times each individual channel is sampled.

<sample_count> must be a nonzero, positive integer, and a multiple of the number of channel pipes. For
extended-time sampling, it can be as large as 9.22 x 1018. For Data Acquisition Processor models that provide
simultaneous sampling of multiple signal lines, the <sample_count> must be an integer multiple of the number
of channel groups times the sampling group size.

When the SAMPLESAMPLESAMPLESAMPLE command specifies the BURST sampling mode, the COUNTCOUNTCOUNTCOUNT command is used to end data
collection in each burst.

Example

CHANNELS 100
COUNT 100000

When the input configuration is started, the Data Acquisition Processor acquires 100000 samples, or 1000 samples
for each input channel. Then the configuration stops.

See Also

CYCLECYCLECYCLECYCLE, SAMPLESAMPLESAMPLESAMPLE, HTRIGGER for inputHTRIGGER for inputHTRIGGER for inputHTRIGGER for input, COUNT for outputCOUNT for outputCOUNT for outputCOUNT for output

Chapter 19 DAPL Commands: COUNT (for output updating) 181

COUNT (for output updating)

Specify the number of updates for an output configuration to generate.

COUNT <update_count>

Parameters
<update_count>

An integer that specifies the number of updating operations.
WORD CONSTANT | LONG CONSTANT | extended sample count

Description
A COUNTCOUNTCOUNTCOUNT command in an output configuration definition specifies the number of updates that the output
configuration produces before stopping. The <update_count> parameter specifies the total number of updates
generated in all output channels. <update_count> must be a nonzero, positive integer, and a multiple of the
number of channel pipes. For extended-time signal generation, it can be as large as 9.22 x 1018 . Divide
<update_count> by the number of output channels in the configuration to obtain the number of times each
individual channel is updated.

When the UPDATEUPDATEUPDATEUPDATE command specifies the BURSTCYCLE output mode, a COUNTCOUNTCOUNTCOUNT command is required to specify the
length of the output burst.

A COUNTCOUNTCOUNTCOUNT command can be used in conjuction with a CYCLECYCLECYCLECYCLE command to generate multiple copies of a wave cycle
before stopping. The CYCLECYCLECYCLECYCLE command specifies the number of passes through the channel list to generate one
cycle of a waveform in every output channel. The number of updates produced by this cycle is the number of
channels times the CYCLECYCLECYCLECYCLE value. To get an exact integer number of cycles, multiply that value by the number of
cycles to generate, and specify the result value in the <update_count> field.

Example

CHANNELS 10
COUNT 10000

When the output configuration is started, the Data Acquisition Processor delivers a sequence of 10000 output
updates and then stops the updating process. Because there are 10 channels in the configuration, each channel will
be updated with 1000 output values.

See Also

CYCLECYCLECYCLECYCLE, HTRIGGER for outputHTRIGGER for outputHTRIGGER for outputHTRIGGER for output, UPDATEUPDATEUPDATEUPDATE, COUNT for inputCOUNT for inputCOUNT for inputCOUNT for input

182 Chapter 19 DAPL Commands: CROSSPOWER

CROSSPOWER

Define a task that computes a crosspower spectrum for blocks of data.

CROSSPOWER (<p1>, <p2>, <mode>, <m>, <window>, <p3>, <p4>
 [, <p5>])

Parameters
<p1>

An input pipe that represents the input signal from the device under test.
WORD PIPE | LONG PIPE | FLOAT PIPE | DOUBLE PIPE

<p2>
An input pipe that represents the output signal from the device under test.
WORD PIPE | LONG PIPE | FLOAT PIPE | DOUBLE PIPE

<m>
A number specifying the size of the transform data block.
WORD CONSTANT

<window>
A windowing vector or a number that specifies a predefined window.
WORD CONSTANT |
WORD VECTOR | LONG VECTOR | FLOAT VECTOR | DOUBLE VECTOR

<p3>
A output pipe that contains the real part of the crosspower spectrum.
LONG PIPE | FLOAT PIPE | DOUBLE PIPE

<p4>
A output pipe that contains the imaginary part of the crosspower spectrum.
LONG PIPE | FLOAT PIPE | DOUBLE PIPE

<p5>
An optional pipe that contains the autopower spectrum of <p1>.
LONG PIPE | FLOAT PIPE | DOUBLE PIPE

Description
CROSSPOWERCROSSPOWERCROSSPOWERCROSSPOWER computes a crosspower spectrum and autopower spectrum for blocks of data. At each frequency, the
crosspower spectrum of <p1> and <p2> is computed by multiplying the complex conjugate of the value of the
FFT of <p1> and the value of the FFT of <p2>. At each frequency, the autopower spectrum of <p1> is computed
by multiplying the complex conjugate of the value of the FFT of <p1> and the value of the FFT of <p1>. The
autopower spectrum is just the power spectrum of <p1>; this also can be calculated using FFTFFTFFTFFT. Under some
definitions, reactive power is the CROSSPOWERCROSSPOWERCROSSPOWERCROSSPOWER result.

When using LONG, FLOAT, or DOUBLE input data streams, the input and output types must match. When the
input data type is WORD, this is a special case because there there is very little chance that the computed results will
fit into WORD data type without overflowing the representable range. The CROSSPOWERCROSSPOWERCROSSPOWERCROSSPOWER command will require the
output data type LONG for the special but very common case of input data type of type WORD. The 32-bit LONG data

Chapter 19 DAPL Commands: CROSSPOWER 183

streams also have range limitations, but unfortunately no extended precision fixed-point data type for returning
large results, so you should avoid LONG input data for most applications.

Pipes <p1> and <p2> are inputs to CROSSPOWERCROSSPOWERCROSSPOWERCROSSPOWER and typically represent the input signal and the output signal
from a device under test. Pipes <p3> and <p4> are outputs of CROSSPOWERCROSSPOWERCROSSPOWERCROSSPOWER and contain the real and imaginary
parts of the crosspower spectrum of <p1> and <p2>. <p5> is an optional pipe. This is an output from
CROSSPOWERCROSSPOWERCROSSPOWERCROSSPOWER which contains the autopower spectrum of <p1>. The autopower spectrum always is real.

The parameters <m> and <window> configure the FFT and have the same meaning as in the FFTFFTFFTFFT command. <m> is
the size of the transform. <window> is a window vector specification or predefined window selection code. See
the FFTFFTFFTFFT command for details.

CROSSPOWERCROSSPOWERCROSSPOWERCROSSPOWER can be used in conjunction with TFUNCTION2TFUNCTION2TFUNCTION2TFUNCTION2 for calculating the transfer function of a “black box”
from input and output data. The advantage of using crosspower and autopower spectra is that these are insensitve
to phase and can be averaged to reduce noise prior to computing the transfer characteristic.

Example

CROSSPOWER (P1, P2, 10, 0, P3, P4, P5)

Calculate crosspower spectrum and autopower spectrum of P1 and P2 on blocks of 1024 points with a rectangular
window. Returns the real and imaginary parts of the crosspower spectrum of P1 in pipes P3 and P4, and the
autopower spectrum of P1 in pipe P5.

See Also
FFTFFTFFTFFT

184 Chapter 19 DAPL Commands: CTCOUNT

CTCOUNT

Define a task that extends a 16-bit event count to 32 bits.

CTCOUNT (<in_pipe>, <out_pipe>)

Parameters
<in_pipe>

Input pipe for word data.
WORD PIPE

<out_pipe>
Output pipe for long data.
WORD PIPE | LONG PIPE

Description
CTCOUNTCTCOUNTCTCOUNTCTCOUNT is used with the Counter Timer Board to convert the 16-bit count provided by a Counter Timer Board
into a 32-bit count. This allows DAPL to provide 32-bit counter capabilities using 16-bit counter hardware.

CTCOUNTCTCOUNTCTCOUNTCTCOUNT converts word data to long data, assuming that the input values represent the low-order words of a
sequence of non-decreasing long word values. For correct operation, the input to the Counter Timer Board is
limited to a frequency with less than 65535 pulses in every period of length T, where T is the time between
successive acquisitions of a counter/timer input.

If <out_pipe> is a word pipe, CTCOUNTCTCOUNTCTCOUNTCTCOUNT is equivalent to COPYCOPYCOPYCOPY.

Example

CTCOUNT (IPIPE5, P1)

Read data from a Counter Timer Board from input channel pipe 5, convert it to long word counts, and write the
results to long pipe P1.

See Also
CTRATECTRATECTRATECTRATE

Chapter 19 DAPL Commands: CTRATE 185

CTRATE

Define a task that computes the arrival rate of timed events.

CTRATE (<in_pipe>, <out_pipe>)

Parameters
<in_pipe>

Input data pipe.
WORD PIPE

<out_pipe>
Output data pipe
WORD PIPE | LONG PIPE

Description
CTRATECTRATECTRATECTRATE is used with the Counter Timer Board to convert the 16-bit count provided by the Counter Timer Board
into differences which represent rate or frequency data.

CTRATECTRATECTRATECTRATE calculates differences of successive event counts, assuming that the input values represent the low-order
words of a sequence of non-decreasing long word values. For correct operation, the input to the Counter Timer
Board is limited to a frequency which allows the Data Acquisition Processor to determine the correct 32-bit count.
This means that the input must have less than 32767 or 65535 pulses in every period of length T, depending on
whether pipe <out_pipe> is a word pipe or a long pipe, where T is the time between successive acquisitions of a
counter/timer input.

Example

CTRATE (IPIPE5, P1)

Read data from a Counter Timer Board from input channel pipe 5, convert to frequency data, and write the results
to word pipe P1.

See Also
CTCOUNTCTCOUNTCTCOUNTCTCOUNT

186 Chapter 19 DAPL Commands: CYCLE

CYCLE

Specify that an output configuration generates a repeating pattern.

CYCLE <n>

Parameters
<n>

The number of output updates for each output channel pipe before repeating.
WORD CONSTANT | LONG CONSTANT

Description
The CYCLECYCLECYCLECYCLE command specifies that an output configuration must produce a repeating pattern. The parameter <n>
specifies the number of passes through the output channel list. Each output channel will receive <n> updates
before the cycle repeats. <n> can take any positive value up to the maximum memory space available. Typical
applications are the generation of complex waveforms and repetitive control sequences.

 Note: CYCLECYCLECYCLECYCLE is different from other output configurations commands, such as COUNTCOUNTCOUNTCOUNT. CYCLECYCLECYCLECYCLE specifies the number
of channel lists processed while COUNTCOUNTCOUNTCOUNT specifies the number of update values processed.

Because of the repeating data cycles, the output processing requires only <n> values per channel from its data
source. These values can then be used many times from memory to generate an output burst. This makes signal
generation very efficient. When the output updating mode as specified by the UPDATEUPDATEUPDATEUPDATE command is CONTINUOUS
or BURSTCYCLE, the output processing accepts no additional data and the supplier task is effectively shut down
after delivering these data. Other tasks should not depend on the supplier task as a continuing data source. It is
very common to use waveform synthesis commands such as SINEWAVESINEWAVESINEWAVESINEWAVE or SAWTOOTHSAWTOOTHSAWTOOTHSAWTOOTH to produce the data for the
output sequences.

When the BURST or BURSTCYCLE updating mode is specified by the UPDATEUPDATEUPDATEUPDATE command, and the CYCLECYCLECYCLECYCLE command
is specified as well, the output updating activity starts when each channel has received the <n> update values per
channel to cover the CYCLECYCLECYCLECYCLE specification. The burst ends when the COUNTCOUNTCOUNTCOUNT command is satisfied. For the case of
BURST updating mode, an additional <n> new update values per channel, to cover the CYCYCYCYCLECLECLECLE specification again,
are required before another burst can occur. In the CONTINUOUS updating mode, the cycle repeats indefinitely,
until the entire output processing configuration is stopped.

Example

CYCLE 1024

Specify that each channel in the output configuration repeats a pattern of 1024 updates.

See Also
UPDATEUPDATEUPDATEUPDATE, SAWTOOTHSAWTOOTHSAWTOOTHSAWTOOTH, SINEWAVESINEWAVESINEWAVESINEWAVE, COSINEWAVECOSINEWAVECOSINEWAVECOSINEWAVE, SQUAREWAVESQUAREWAVESQUAREWAVESQUAREWAVE, TRIANGLETRIANGLETRIANGLETRIANGLE

Chapter 19 DAPL Commands: DACOUT 187

DACOUT

Define a task that updates a digital-to-analog converter independent of output clocking hardware.

DACOUT ([init_value,] <in_pipe>, <dac_number> [, <slew_option>]
 [, <interval> [, <reset_time>]])

 DACOUT (<in_var>, <dac_number> [, <interval>])

Parameters
<init_value>

Optional initial output value for digital-to-analog converter prior to updates.
WORD CONSTANT

<in_pipe>
Source data pipe for first command form.
WORD PIPE

<in_var>
Source variable for second command form.
WORD CONSTANT | WORD VARIABLE

<dac_number>
Hardware address of the digital-to-analog converter.
WORD CONSTANT

<slew_option>
Case-sensitive keyword (no quotes) specifying how to process a data backlog.
skip | slew | noskip | skipalign | slewalign

<interval>
Optional updating interval in microseconds.
WORD CONSTANT | LONG CONSTANT

<reset_time>
Delay time in microseconds before resetting aligned counting modes to zero.
WORD CONSTANT | LONG CONSTANT

Description
DACOUTDACOUTDACOUTDACOUT updates a digital-to-analog converter asynchronously by reading from a data stream <in_pipe> or from a
shared scalar value <in_var>, and writing the value to a converter specified by parameter <dac_number>,
bypassing the hardware-controlled timing of an output procedure. This command is frequently applied in control
and monitoring applications where the delays of hardware data buffers for regularly clocked updates are
unacceptable, but the extreme precision of hardware output clocking is not necessary.

The <dac_number> parameter specifies a hardware address for the digital-to-analog converter. Hardware
addresses are slightly different than the logical channel numbers that would be used in output configuration
commands. The address numbers for onboard DACs are 0 and 1. Address number 2 accesses analog output
expansion port 0, address number 3 accesses output expansion port 1, and so on.

188 Chapter 19 DAPL Commands: DACOUT

The behaviors are different for the two kinds of data sources, so there are two command forms.

For the command form with a shared variable data source, the value of the variable is used to initialize the output
port state when the command starts. Other tasks can change the variable value at any time, and the only way the
DACOUTDACOUTDACOUTDACOUT command can know whether this has happened is to examine the variable value each time there is an
opportunity to execute. If DACOUTDACOUTDACOUTDACOUT is running as a high-priority task, this has a danger of soaking up all available
CPU capacity, so that other tasks cannot run. To avoid this hazard, you can specify a positive <interval>
parameter value, in microseconds, setting a minimum time interval between tests. If you do not specify the
interval, the DAPL system will select a default.

For the command form with a pipe data source, the behaviors of DACOUTDACOUTDACOUTDACOUT are a little more complicated. A value
might not arrive promptly to set the initial converter output state, so an optional <init_value> parameter can
specify the initial output state to apply when the command starts, prior to the first update. After that, new values
from the pipe can represent continuous streams or occasional bursts.

The <slew_option> and <interval> parameters work in combination to tell the DACOUTDACOUTDACOUTDACOUT command the strategy for
obtaining update data and controlling when they are sent to the DAC.

If no <interval> value is specified, the DACOUTDACOUTDACOUTDACOUT command will send the data out as quickly as possible, any time
the task scheduler allows the DACOUTDACOUTDACOUTDACOUT command to execute, for minimum real-time delays. If more than one value
is received, all values but the most recent one are considered “old history.” Use one of the following
<slew_option> choices.

• skip - If more than one update value is available, ignore old values and post the most current one to
minimize real-time delays. This is the default behavior with no <slew_option> specified.

• slew - Almost the same as the skip option, but use all data, and spin through all of the updates quickly.
The digital-to-analog converters might not be able to track this rapid sequence, however. Accuracy of the
output stream during these transient conditions is not assured, so use this mode with caution.

If you specify an <interval> value, the DACOUTDACOUTDACOUTDACOUT command will try to send updates at the specified interval in a
regular sequence. Timing starts with the arrival of the first update sample. The interval is determined by a clock
that is independent of the input and output configurations. Regular updating intervals are possible, but not with the
speed and timing accuracy of hardware control. There is some uncertainty about the exact time of an update when
other tasks coexist with the DACOUTDACOUTDACOUTDACOUT command at equal priority

There are two possible assumptions about the way that data will arrive at the DACOUTDACOUTDACOUTDACOUT command when an
<interval> value is specified. Under the first assumption, the data will arrive in real time, one value for each
update interval. If multiple values are received, this indicates that a delay occurred somewhere. Only the most
recent value means anything, and the rest are “old history.” Use one of the following three <slew_option> modes.

• noskip - When a timing interval arrives, if an update value is available, send the first one to the DAC.
Never discard any update data. Use this option when a precomputed data block is provided and it is
important to reach each level without missing anything.

• skip – Discard old data and send only the most recent value to the DAC. This is the same as skip mode
without the timing interval, except that updates occur at timed locations instead of any time the task
happens to run. This is the default when an <interval> is specified but a <slew_option> mode is not.

• slew - The same as the slew mode without a timing interval, except that the sequence of rapid updates
begins on a timing interval. The same as the skip mode with a timing interval, except instead of
discarding the old data, spin through them and send them to the DAC in quick sequence.

Chapter 19 DAPL Commands: DACOUT 189

Under the second assumption, updates are sent to the DACOUTDACOUTDACOUTDACOUT command in precomputed blocks, and the values
must be collated one-for-one with timing intervals of length <interval>. If for any reason updates are missed, the
corresponding values are discarded so that the remaining updates remain at the intended locations. These options
require a timing <interval> and one of the following two <slew_option> modes.

• skipalign - Skipped updates are detected and counted. When each timing interval arrives, one value is
discarded for each missed update time, and then the next value is sent out to the DAC.

• slewalign - This is almost the same as the skipalign option, except that instead of merely
discarding extra update values, they are sent in rapid sequence to the DAC.

In the two aligned modes, a consistent strategy of discarding a value for each missed clock interval only works
when the supplied data stream is continuous. If not, the strategy fails because many update cycles are missed and
counted, potentially causing a large number of values to be discarded. To avoid this problem, specify a
<reset_time> parameter value that is larger than <interval>. If this <reset_time> interval passes without
receiving any new data for updates, the missed sample count is reset to zero and no data are discarded to start the
next burst of activity. Make <reset_time> sufficiently large that activity bursts are clearly distinguished from
ordinary scheduling delays.

Here are some application examples for using DACOUTDACOUTDACOUTDACOUT command modes.

1. The application requires the most recent value without delay. Use no <interval>, so that there is no
added delay. Select the <slew_option> skip, so that any extra values are considered “old history” and
deleted. The most recent update value is sent to the DAC.

2. Updates consist of a few short pulses, but a minimum pulse width must be guaranteed for each.
Specify an updating time interval with the <interval> parameter, and specify the <slew_option>
noskip. Send the pulse level values that the signal must reach, one value at a time or in a block
sequence.

3. Send a block of precomputed signal values, and release them on clocked update intervals. Specify
an updating time interval with the <interval> parameter, and specify the <slew_option> skipalign.

4. Receive real-time signal data at a high rate, and send selected samples in real-time at a reduced
rate. Specify the <interval> between updates, and specify the <slew_option> skip. More data will
arrive than can be used. At each update interval, send only the newest value.

5. Deliver intermittent tone bursts. Values are computed and provided one update at a time during a
period of activity, but there are no updates during periods of inactivity. Specify the <interval> for the
updates, with the <slew_option> skipalign and a <reset_time> equal to 10 times <interval>. If 10 or
more updates are missed, that indicates the end of an activity burst and the count of late samples is
cleared to zero.

Note: The voltages on the digital-to-analog converters remain unchanged after STOPSTOPSTOPSTOP and RESETRESETRESETRESET commands.

190 Chapter 19 DAPL Commands: DACOUT

Examples

DACOUT (P1, 0)

Reads the most recent values from pipe P1, and writes them to DAC 0, using the default strategy skip of sending
the most current value with minimum delay.

DACOUT (V1, 0, 1000)
Reads the current value of variable V1 at time intervals of approximately 1000 microseconds (one millisecond) and
updates the value on DAC 0.

DACOUT (P1, 5,slew)
Reads update values from pipe P1, and writes them to expansion DAC 5, using the strategy slew of rapidly
posting all backlogged old values.

DACOUT (1000, P1, 0)
First initializes the output state of DAC 0 to a value of 1000. After that, reads the most recent values from pipe P1,
and writes the most current one to DAC 0, using the default strategy skip of sending only the most recent update
value at each opportunity to execute.

DACOUT (P1, 1, noskip, 1000)
At intervals of 1000 microseconds (1 millisecond) attempts to read a value from pipe P1, and, if it finds one, it
updates DAC 1 using the noskip strategy of sending the next available value at each opportunity to execute.

DACOUT (-1620, P1, 2,skipalign, 1000, 4500)
Initializes expansion DAC 2 to a value of -1620. Tries to read a value from pipe P1 at intervals of 1000
microseconds (one millisecond) for updating the value at DAC 2. If scheduling is slightly delayed, so that an
update is missed and multiple values arrive later, the skipalign strategy discards old data up to the best-aligned
value for the current time interval. If data are not available for more than 4 update intervals of 1000 microseconds,
presumes that the activity providing data has ended, and resets the interval counting so that no data are discarded
at the start of the next data burst.

See Also
DIGITALOUTDIGITALOUTDIGITALOUTDIGITALOUT, ODEFINEODEFINEODEFINEODEFINE

Chapter 19 DAPL Commands: DECIBEL 191

DECIBEL

Define a task that converts data into decibel units.

DECIBEL (<in_pipe>, <reference>, <scale>, <out_pipe>)

Parameters
<in_pipe>

Input data pipe.
WORD PIPE | LONG PIPE | FLOAT PIPE | DOUBLE PIPE

<reference>
An input value corresponding to 0 dB.
WORD CONSTANT | LONG CONSTANT | FLOAT CONSTANT | DOUBLE CONSTANT

<scale>
An integer that represents a scale factor for the output.
WORD CONSTANT | LONG CONSTANT | FLOAT CONSTANT | DOUBLE CONSTANT

<out_pipe>
Output pipe for decibel data.
WORD PIPE | LONG PIPE | FLOAT PIPE | DOUBLE PIPE

Description
DECIBELDECIBELDECIBELDECIBEL converts data from <in_pipe> to decibel units. <reference> is the input value corresponding to 0 dB.
Typical reference levels are:

• 32767 (maximum WORD value) for WORD pipes

• 2147483647 (maximum LONG value) for LONG pipes

• 1.0 for FLOAT or DOUBLE pipes

<scale> is a scale factor for the output. For the fixed point data types, <scale> is an integer multiplier value,
typically with values 1, 10, or 100. With <scale> equal to 100, for example, 3.25 dB is output as the number 325,
preserving two digits of precision in the fraction. <scale> can be used with the decimal point specification of
FORMATFORMATFORMATFORMAT to produce formatted decibel output with zero, one, or two decimal places displayed.

The output of a DECIBELDECIBELDECIBELDECIBEL task is given by

20 * <scale> * log10 (X/<reference>),

where X is the value of the input. The output range is limited by the range of the input data type.

The decibel operation is defined only for positive input values. When an input value is zero or negative, the
DECIBELDECIBELDECIBELDECIBEL command generates a special output value equal to the most negative value for fixed point streams, or
special floating point number NAN for floating point streams.

192 Chapter 19 DAPL Commands: DECIBEL

Fixed point conversions are approximate, using a lookup table for speed. For WORD data, accuracy is roughly equal
to a 14-bit converter. LONG evaluations extend the range and add an additional fraction digit to the accuracy. If
you need maximum accuracy, use floating point data types.

Examples

PIPE P1 WORD, PDB WORD
DECIBEL (P1, 32767, 100, PDB)

Read fixed point values from pipe P1, convert data to decibel units with reference level of 32767 defining the 0 dB
signal level. For purposes of display, multiply by 100 to preserve two fractional digits in the results, and write
results to pipe PDB.

PIPE P1 FLOAT, PDB FLOAT
DECIBEL (P1, 100.0, 1.0, PDB)

Read floating point values from pipe P1. Convert data to decibel units relative to a reference level of 100.0. Do not
apply any additional scaling to the results. Send results directoy to pipe PDB.

Chapter 19 DAPL Commands: DELTA 193

DELTA

Define a task that computes differences between successive data values.

DELTA (<in_pipe>, <out_pipe>)

Parameters
<in_pipe>

Input data pipe.
WORD PIPE | LONG PIPE | FLOAT PIPE | DOUBLE PIPE

<out_pipe>
Output pipe for difference data.
WORD PIPE | LONG PIPE | FLOAT PIPE | DOUBLE PIPE

Description
DELTADELTADELTADELTA reads from <in_pipe>, computes the forward differences of the data, and puts the result values into
<out_pipe>. A forward difference is computed by subtracting each <in_pipe> value from its successor. That
means one difference value is generated for each data value read from <in_pipe>, with the exception of the first.

Differences can be considered a low order approximation for a derivative, under suitable scaling to account for the
length of the sampling intervals.

Note: Differences between corresponding values in two separate data streams can be computed using DAPL
expressions.

Example

DELTA (P1,P2)

Read data from P1, compute the forward differences, and place the results in P2.

See Also
DAPL Expressions Chapter

194 Chapter 19 DAPL Commands: DEXPAND

DEXPAND

Define a task that provides output expansion on a digital port.

DEXPAND (<in_pipe>, <output_vector>, <out_pipe> [, <type>])

Parameters
<in_pipe>

Input word pipe.
WORD PIPE

<output_vector>
A vector containing a list of the output pins to which data should be sent.
VECTOR

<out_pipe>
Output pipe for output data.
WORD PIPE

<type>
An optional parameter that specifies the type of output expansion boards.
WORD CONSTANT

Description
DEXPANDDEXPANDDEXPANDDEXPAND provides output expansion on the digital port. <output_vector> is a vector containing a list of the
expanded output pins to which data should be sent. <in_pipe> is a word pipe that contains data to be sent to the
output pins; data must appear in the order of the list in <output_vector>. For each data value read from
<in_pipe>, four words specifying the output pin number and the data are written to <out_pipe>.

Optional parameter <type> specifies the type of output expansion boards. A value of 0 specifies digital output
expansion boards. A value of 1 specifies analog output expansion boards. See the hardware documentation for
details on output expansion boards.

DEXPANDDEXPANDDEXPANDDEXPAND is used only for synchronous output expansion. The OUTPORTOUTPORTOUTPORTOUTPORT command configures asynchronous output
expansion. Asynchronous output to the digital output port is not available when DEXPANDDEXPANDDEXPANDDEXPAND is used.

Note: It is possible to stop an output configuration in the middle of a four word output expansion sequence. If
another output configuration then is started, the first value written to the expanded output port may be incorrect.

Example

DEXPAND(P1, (4, 5, 6, 7), OPIPE0)

Prepare data from pipe P1 for output to digital expansion ports 4, 5, 6, and 7, and send the data to synchronous
output channel pipe 0.

Chapter 19 DAPL Commands: DEXPAND 195

See Also
DIGITALOUTDIGITALOUTDIGITALOUTDIGITALOUT, DACOUTDACOUTDACOUTDACOUT, ODEFINEODEFINEODEFINEODEFINE, OPTIONSOPTIONSOPTIONSOPTIONS, OUTPORTOUTPORTOUTPORTOUTPORT

196 Chapter 19 DAPL Commands: DFT

DFT

Define a task to calculate selected terms of a Discrete Fourier Transform efficiently.

DFT (<mode>, <N>, <window>, <terms>, <pipein>, <pipeout1> [,<pipeout2>])

Parameters
<mode>

A constant enumerator in the range 0 to 6 that selects post-processing.
WORD CONSTANT

<N>
A number specifying the length of the transform input data block.
WORD CONSTANT | LONG CONSTANT

<window>
A constant enumerator or a vector specifying a window operation.
WORD CONSTANT |
WORD VECTOR | LONG VECTOR | FLOAT VECTOR | DOUBLE VECTOR

<terms>
A vector specifying the frequencies to be computed, by index.
WORD VECTOR | LONG VECTOR

<pipein>
Data pipe for a real-valued input data stream.
WORD PIPE | LONG PIPE | FLOAT PIPE | DOUBLE PIPE

<pipeout1>,<pipeout2>
Data pipes for output results, according to mode.
WORD PIPE | LONG PIPE | FLOAT PIPE | DOUBLE PIPE

Description
DFTDFTDFTDFT calculates a set of terms of the Discrete Fourier Transform (DFT). The DFTDFTDFTDFT command computes a subset of
the transform terms computed by the FFTFFTFFTFFT command, using a different numerical algorithm.

Similar to the FFTFFTFFTFFT command, the <mode> parameter identifies the kind of output processing to apply to the
transform. In practice, DFT operations for a limited number of terms are rarely used in the inverse direction, and
are rarely applied to complex-valued input data. Given these restrictions, the DFTDFTDFTDFT command supports only the
following subset of the processing modes of the FFTFFTFFTFFT command.

Mode parameter Processing operation

Mode 0 Real data block in, complex value out

Mode 4 Real data block in, power out

Mode 5 Real data block in, magnitude out

Chapter 19 DAPL Commands: DFT 197

Mode 6 Real data block in, magnitude and phase out

The DFTDFTDFTDFT command does not apply the same kinds of adjustments to the power computations as the FFTFFTFFTFFT command.
If you compute, for example, the spectral power at frequency location k, symmetry properties of the transform
guarantee that the same amount of power will also appear at location N-k. The FFTFFTFFTFFT command takes both terms into
account and combines them, so that all of the power in the transform is accounted for. But the DFTDFTDFTDFT command will
compute either term separately, so it computes the power at only the term that you specify; therefore, a power
result is smaller by a factor 2. A similar effect occurs for the mode 5 magnitudes. Because the magnitude is related
to the power, the result is smaller by a factor square root of 2 than the magnitude produced by the FFTFFTFFTFFT command
for real-valued data streams.

The <N> parameter specifies the number of terms in each input block. The FFT depends on certain symmetries that
result from restricting the block sizes. A DFT does not use these symmetries, and does not need to restrict the
block length, so any positive number N is accepted as the input block size, but the larger the block length the more
buffer storage is required.

The <window> parameter specifies a window operator. Constant enumerators for pre-defined windows are the
same ones supported by the FFTFFTFFTFFT command. For explicit user-defined window operators, a VECTOR can be specified
in any basic data type. The data types will be converted internally to the appropriate type for run-time processing.
For fixed-point windows, the maximum positive integer value represents the real number 1.0, and smaller integer
values proportionally represent fractions. Fractions can be represented using an ordinary decimal notation when
using floating-point data types to define the window. See the documentation for the FFTFFTFFTFFT command for more
information about how to represent a window operator.

Window parameter Window type

0 Rectangular window, i.e., no windowing

1 von Hann window

2 Hamming window

3 Bartlett window

4 Blackman window

The <terms> vector specifies the index locations of terms to be computed. DFT index values must be in the range
0 to N-1. A DFT result corresponds to the result you would obtain from an FFT using its <terms> value as an
index to the FFT output block. Applications typically look for frequencies in a narrow band, so it is most common
for the <terms> vector to list just a few consecutive index values in order.

The DFTDFTDFTDFT command is most useful for computing just a few terms of a forward DFT transform. The FFTFFTFFTFFT command
is better choice for computing a large number of spectrum terms. The fixed cost of computing the FFT is
Kf•N•log2(N). If you don’t need all of the terms, discard the ones that you don’t need. For comparison, the cost to
compute log2(N) terms using the DFT algorithm is is Kd•N•log2(N). You can see that this has the same form.
The theoretical Kd is smaller by a factor of 2 and, because of processor and memory access advantages, the DFT
tends to gain additional speed. As a quick rule of thumb, if the number of DFT terms in the <terms> vector is
2•log2(N) or less, the DFT is probably more efficient. For more DFT terms, run a processing rate benchmark to
compare the efficiency of the two commands.

198 Chapter 19 DAPL Commands: DFT

The configuration of input and output pipes depends on the operating mode. For complex output or magnitude and
phase, both the <pipeout1> and the <pipeout2> parameters must be specified. For magnitude or power output,
only <pipeout1> is needed. As a general rule, the data types for output pipes must match the data types for input
types. The important exception is mode 4 (power output), when the input data type is WORD. For this special case,
overflowing the WORD numeric range would occur frequently, and to avoid this the output data type is forced to
LONG type. A similar fix-up is not available for LONG input data type, so it is probably best to avoid LONG input
data, and convert your LONG data streams to FLOAT or DOUBLE before applying the DFTDFTDFTDFT command

Example

PIPES PIN FLOAT, POUTR FLOAT, POUTI FLOAT
VECTOR TERMS = (200, 201, 202, 203, 204, 205, 206)
. . .
DFT(0, 1500, 2, TERMS, PIN, POUTR, POUTI)

Use the DFTDFTDFTDFT command to detect frequencies in a narrow band. The results of the transform are expressed as
complex frequency pairs (mode 0). Each input block from pipe PIN has 1500 values. Apply a Hamming window
(type 2) to the input data block before applying the DFT analysis. The TERMS vector specifies the index values for
the seven frequency locations covering the relevant frequency band. For each input block received, 7 complex
output results are produced, corresponding to the frequencies

 200*2*pi*f / 500, 201*2*pi*f / 500, …, 206*2*pi*f / 500,

where f is the sampling rate used to obtain the input sample stream. The real parts of the seven DFT results are
placed into pipe POUTR, and the imaginary parts are placed into pipe POUTI.

See Also
FFTFFTFFTFFT

See the Chapter on “Fast Fourier Transform” for more information about Fourier transforms, window operations,
and operating modes.

Chapter 19 DAPL Commands: DIGITALOUT 199

DIGITALOUT

Define a task that updates a digital output port independent of output clocking hardware.

DIGITALOUT ([init_value,] <in_pipe>, <port_number> [, <slew_option>]
 [, <interval> [, <reset_time>]])

 DIGITALOUT (<in_var>, <port_number> [, <interval>])

Parameters
<init_value>

Optional initial output bit pattern for the digital port prior to updates.
WORD CONSTANT

<in_pipe>
Source data pipe for first command form.
WORD PIPE

<in_var>
Source variable for second command form.
WORD CONSTANT | WORD VARIABLE

<port_number>
Hardware address of the digital port.
WORD CONSTANT

<slew_option>
Case-sensitive keyword (no quotes) specifying how to process a data backlog.
skip | slew | noskip | skipalign | slewalign

<interval>
Optional updating interval in microseconds.
WORD CONSTANT | LONG CONSTANT

<reset_time>
Delay time in microseconds before resetting aligned counting modes to zero.
WORD CONSTANT | LONG CONSTANT

Description
DIGITALOUTDIGITALOUTDIGITALOUTDIGITALOUT updates a digital output port asynchronously by reading from a data stream <in_pipe> or from a
shared scalar value <in_var>, and writing the value to a digital port specified by parameter <port_number>,
bypassing the hardware-controlled timing of an output procedure. This command is frequently applied in control
and monitoring applications when unscheduled events determine the digital output values that must be generated,
or in specialized signal generation applications where the delays of hardware data buffers for regularly clocked
updates are unacceptable, but the extreme precision of hardware output clocking is not necessary.

The <port_number> parameter specifies a hardware address for the digital output port. If you use the onboard
digital port directly, specify port address 0. If you use the digital port for digital output expansion, specify port
address 0, 1, 2, etc. according to the address range configuration of your digital expansion boards.

200 Chapter 19 DAPL Commands: DIGITALOUT

The behaviors are different for the two kinds of data sources, so there are two command forms.

For the command form with a shared variable data source, the value of the variable is used to initialize the output
port state when the command starts. Other tasks can change the variable value at any time, and the only way the
DIGITALOUTDIGITALOUTDIGITALOUTDIGITALOUT command can know whether this has happened is to examine the variable value each time there is an
opportunity to execute. If DIGITALOUTDIGITALOUTDIGITALOUTDIGITALOUT is running as a high-priority task, this has a danger of soaking up all
available CPU capacity, so that other tasks cannot run. To avoid this hazard, you can specify a positive <interval>
parameter value, in microseconds, setting a time interval between updates. If you do not specify the interval, the
DAPL system will select a default.

For the command form with a pipe data source, the behaviors of DIGITALOUTDIGITALOUTDIGITALOUTDIGITALOUT are a little more complicated. A
value might not arrive promptly to set the initial digital output port state, so an optional <init_value> parameter
can specify the initial output state to apply when the command starts, prior to the first update. After that, new
values from the pipe can represent continuous streams or occasional bursts.

The <slew_option> and <interval> parameters work in combination to tell the DIGITALOUTDIGITALOUTDIGITALOUTDIGITALOUT command the
strategy for obtaining update data and controlling when they are sent to the digital output port.

If no <interval> value is specified, the DIGITALOUTDIGITALOUTDIGITALOUTDIGITALOUT command will send the data out as quickly as possible, any
time the task scheduler allows the DIGITALOUTDIGITALOUTDIGITALOUTDIGITALOUT command to execute, for minimum real-time delays. If more than
one value is received, all values but the most recent one are considered “old history.” Use one of the following
<slew_option> choices.

• skip - If more than one update value is available, ignore old values and post the most current one to
minimize real-time delays. Use this option if output levels are what matters and transitions are noise.

• slew - Almost the same as the skip option, but use all data, and spin through all of the updates quickly.
Most digital devices can track these transitions without difficulty. This is the default behavior with no
<slew_option> specified. Use this option if observing transitions is important to track state changes.

If you specify an <interval> value, the DIGITALOUTDIGITALOUTDIGITALOUTDIGITALOUT command will try to send updates at the specified interval in
a regular sequence. Timing starts with the arrival of the first update sample. The interval is determined by a clock
that is independent of the input and output configurations. Regular updating intervals are possible, but not with the
speed and timing accuracy of hardware control. There is some uncertainty about the exact time of an update when
other tasks coexist with the DIGITALOUDIGITALOUDIGITALOUDIGITALOUTTTT task at equal priority

There are two possible assumptions about the way that data will arrive at the DIGITALOUTDIGITALOUTDIGITALOUTDIGITALOUT task when an
<interval> value is specified. Under the first assumption, the data will arrive in real time, one value for each
update interval. If multiple values are received, this indicates that a delay occurred somewhere. Only the most
recent value means anything, and the rest are “old history.” Use one of the following three <slew_option> modes.

• noskip - When a timing interval arrives, if an update value is available, send the first one to the digital
output port. Never discard any update data. Use this option when a precomputed data block is provided
and it is important to reach and hold each level without missing anything.

• skip - Discard old data and send only the most recent value to the digital output port. This is the same as
skip mode without the timing interval, except that updates occur at timed locations instead of any time
the task happens to run.

• slew - The same as the slew mode without a timing interval, except that the sequence of rapid updates
begins on a timing interval. The same as the skip mode with a timing interval, except instead of
discarding the old data, spin through them and send them to the digital output port in quick sequence.
This is the default when an <interval> is specified but a <slew_option> mode is not.

Chapter 19 DAPL Commands: DIGITALOUT 201

Under the second assumption, updates are sent to the DIGITALOUTDIGITALOUTDIGITALOUTDIGITALOUT command in precomputed blocks, and the
values must be collated one-for-one with timing intervals of length <interval>. If for any reason updates are
missed, the corresponding values are discarded so that the remaining updates remain at the intended locations.
These options require a timing <interval> and one of the following two <slew_option> modes.

• skipalign - Skipped updates are detected and counted. When each timing interval arrives, one value is
discarded for each missed update time, and then the bit pattern is sent out to the digital port.

• slewalign - This is almost the same as the skipalign option, except that instead of merely
discarding extra update values, they are sent in rapid sequence to the digital port.

In the two aligned modes, a consistent strategy of discarding a value for each missed clock interval only works
when the supplied data stream is continuous. If not, the strategy fails because many update cycles are missed and
counted, potentially causing a large number of values to be discarded. To avoid this problem, specify a
<reset_time> parameter value that is larger than <interval>. If this <reset_time> interval passes without
receiving any new data for updates, the missed sample count is reset to zero and no data are discarded to start the
next burst of activity. Make <reset_time> sufficiently large that activity bursts are clearly distinguished from
ordinary scheduling delays.

Here are some application examples for using DIGITALOUTDIGITALOUTDIGITALOUTDIGITALOUT command modes.

1. The application requires the most recent bit values as soon as possible. Use no <interval>, so that
there is no added delay. Select the <slew_option> skip, so that any extra values are considered “old
history” and deleted. The most recent update value is sent to the digital output port.

2. Updates consist of a few short pulses, but a minimum pulse width must be guaranteed for each.
Specify an updating time interval with the <interval> parameter, and specify the <slew_option>
noskip. Send the bit patterns one at a time or in a block of update values.

3. Send a block of pre-computed bit patterns, and release them on clocked update intervals. Specify an
updating time interval with the <interval> parameter, and specify the <slew_option> skipalign.

4. Deliver intermittent bursts of bit pattern changes. Values are computed and provided one update at a
time during a period of activity, but there are no updates during periods of inactivity. Specify the
<interval> for the updates, with the <slew_option> skipalign and a <reset_time> equal to 10 times
<interval>. If 10 or more updates are missed, that indicates the end of an activity burst and the count of
late samples is cleared to zero.

Note: The output levels on the digital output ports remain unchanged after STOPSTOPSTOPSTOP and RESETRESETRESETRESET commands.

Examples

DIGITALOUT (P1, 0)

Reads the most recent values from pipe P1, and writes them to digital port 0, using the default strategy skip of
sending the most current value with minimum delay.

DIGITALOUT (V1, 0, 1000)
Reads the current bit pattern of variable V1 at time intervals of approximately 1000 microseconds (one
millisecond) and updates the value on digital port 0.

DIGITALOUT (P1, 5,slew)

202 Chapter 19 DAPL Commands: DIGITALOUT

Reads update values from pipe P1, and writes them to expansion digital port 5, using the strategy slew of rapidly
posting all backlogged old values.

DIGITALOUT ($FF00, P1, 0)
First it initializes the output state of digital port 0 to a value of $FF00, so that the 8 high-order bit positions are
active-high and the 8 low-order bit positions are inactive-low. After that, it reads the available values from pipe
P1, and writes the most current one to digital port 0, using the default strategy skip of sending only the most
recent update value at each opportunity to execute.

DIGITALOUT (P1, 1, noskip, 1000)
At intervals of 1000 microseconds (1 millisecond) attempts to read a value from pipe P1, and, if it finds one, it
updates expansion digital port 1 using the noskip strategy of sending the next available value at each opportunity
to execute.

DIGITALOUT ($004C, P1, 2,slewalign, 1000, 4500)
Initializes expansion digital port 2 to the bit pattern “0000 0000 0100 1100”. Tries to read a value from pipe P1 at
intervals of 1000 microseconds (one millisecond) for updating the value at digital port 2. If scheduling is slightly
delayed, so that an update is missed and multiple values arrive later, the slewalign strategy posts all old data in
rapid succession up to the best-aligned value for the current time interval. If data are not available for more than 4
update intervals of 1000 microseconds, presumes that the activity providing data has ended, and resets the interval
counting so that no data are discarded at the start of the next data burst.

See Also
DACOUTDACOUTDACOUTDACOUT, ODEFINEODEFINEODEFINEODEFINE

Chapter 19 DAPL Commands: DISPLAY 203

DISPLAY

Display selected system information.

DISPLAY <item>

DISP <item>

D <item>

Parameters
<item>

One of the following keywords:

ALLSYMBOLSALLSYMBOLSALLSYMBOLSALLSYMBOLS | COMMANDSCOMMANDSCOMMANDSCOMMANDS | CMDSPECCMDSPECCMDSPECCMDSPEC | CONSTANTSCONSTANTSCONSTANTSCONSTANTS | CPIPESCPIPESCPIPESCPIPES |
DAPLNAMEDAPLNAMEDAPLNAMEDAPLNAME | DHARDWAREDHARDWAREDHARDWAREDHARDWARE | DMODELDMODELDMODELDMODEL | DREVISIONDREVISIONDREVISIONDREVISION | DVARIANTDVARIANTDVARIANTDVARIANT |
DVERSIONDVERSIONDVERSIONDVERSION | EMSGEMSGEMSGEMSG | ERRORSERRORSERRORSERRORS | ENUMENUMENUMENUM | EVMSGEVMSGEVMSGEVMSG |
EVNUMEVNUMEVNUMEVNUM | HMEMORYHMEMORYHMEMORYHMEMORY | ICOUNTSICOUNTSICOUNTSICOUNTS | INPUTSINPUTSINPUTSINPUTS | KNLLOGKNLLOGKNLLOGKNLLOG |
MEMORYMEMORYMEMORYMEMORY | MODULESMODULESMODULESMODULES | OCOUNTSOCOUNTSOCOUNTSOCOUNTS | OEMIDOEMIDOEMIDOEMID | OPTIONSOPTIONSOPTIONSOPTIONS |
OUTPORTOUTPORTOUTPORTOUTPORT | OUTPUTSOUTPUTSOUTPUTSOUTPUTS | OVERFLOWQOVERFLOWQOVERFLOWQOVERFLOWQ | PIPESPIPESPIPESPIPES | PROCEDURESPROCEDURESPROCEDURESPROCEDURES |
SERIALSERIALSERIALSERIAL | STARTSSTARTSSTARTSSTARTS | STRINGSSTRINGSSTRINGSSTRINGS | SYMBOLSSYMBOLSSYMBOLSSYMBOLS | SSSSYSLOGYSLOGYSLOGYSLOG |
TMEMORYTMEMORYTMEMORYTMEMORY | TRIGGERSTRIGGERSTRIGGERSTRIGGERS | UNDERFLOWQUNDERFLOWQUNDERFLOWQUNDERFLOWQ | VARIABLESVARIABLESVARIABLESVARIABLES | VECTOVECTOVECTOVECTORSRSRSRS |
WMSGWMSGWMSGWMSG | WNUMWNUMWNUMWNUM |

Description
DISPLAY prints system information by formatting a brief report and transmitting it through the $SysOut
communication pipe. The <item> parameter selects the information to display. Some item names have
abbreviations, typically two or three characters.

The following list provides additional information about each of the display options.

ALLSYMBOLS
 DISPLAY ALLSYMBOLS lists information about all user-defined and reserved system names, such as the names

assigned to variables and pipes. Acceptable abbreviation: ALL.

CMDSPEC <cmdname> [option]
 DISPLAY CMDSPEC shows the parameter list specification associated with the cmdname processing command.

To see the same information in a restructured internal form, specify the type option. To see the same
information in a more structured layout, specify the typetree option.

COMMANDS
 DISPLAY COMMANDS lists information about the custom commands which have been loaded. Acceptable

abbreviations: COMMAND, COM.

CONSTANTS
 DISPLAY CONSTANTS lists the names, data types, and values of all shared constants. Acceptable abbreviations:
CONSTANT, CONST.

204 Chapter 19 DAPL Commands: DISPLAY

CPIPES
 DISPLAY CPIPES lists information about user-defined and pre-defined communication channel pipes.

Acceptable abbreviations: CPIPE, CP.

DAPLNAME
 DISPLAY DAPLNAME displays the DAPL operating system name such as “DAPL3000”.

DHARDWARE
 DISPLAY DHARDWARE displays DAP hardware information (not available on all models).

DMODEL
 DISPLAY DMODEL displays the DAP model name, such as DAP5400a/627.

DREVISION
 DISPLAY DREVISION displays the DAP hardware revision number such as “1”.

DVARIANT
 DISPLAY DVARIANT displays the variant of the DAPL software system. Most software systems will display
DAPL2000/STANDARD. Special OEM configurations will display DAPL2000/KERNEL.

DVERSION
 DISPLAY DVERSION displays DAPL operating system version such as “1.00”.

EMSG
 DISPLAY EMSG displays the last error message. An empty line is generated if there are no errors recorded in the

system error queue. Displaying a software error message clears the error queue, but displaying hardware error
messages does not clear it.

ENUM
 DISPLAY ENUM prints a number indicating whether a system error has occurred since the last DISPLAY ENUM

command. If the number is zero, no error has occurred. If the number is nonzero, an error has occurred. Nonzero
numbers are error codes that can be found in the Error Messages supplement to this manual. Displaying the value
of ENUM resets the error flag to zero. The occurrence of a buffer overflow or underflow does not affect the error
flag.

ERRORS <number>
 DISPLAY ERRORS prints a description associated with the error message number, as provided by the DAPL

system in the $SysOut text pipe or the ERRORQ buffer after error detection. If number is omitted, all error
message texts are listed. Acceptable abbreviation: ERROR.

EVMSG
 DISPLAY EVMSG displays all error messages, one or more, that are associated with the event ID of the most

recent queued error. The messages are replaced when the next error is queued, or cleared by a RESETRESETRESETRESET command.

EVNUM
 DISPLAY EVNUM displays the event ID associated with the most recent queued error. The event ID is a number

in a hexadecimal notation. The event ID is overwritten when the next error is queued, or cleared by a RESETRESETRESETRESET
command.

HMEMORY

Chapter 19 DAPL Commands: DISPLAY 205

 DISPLAY HMEMORY displays the number of bytes of shared heap memory and total available data memory.
Acceptable abbreviations: HMEM, HM.

ICOUNTS
 DISPLAY ICOUNTS prints the current input configuration sample count. Acceptable abbreviations: ICOUNT, IC.

INPUTS
 DISPLAY INPUTS lists the input procedures. Acceptable abbreviations: INPUT, IN.

KNLLOG
 DISPLAY KNLLOG prints the messages currently stored in the system eventlog buffer.

MEMORY
 DISPLAY MEMORY prints the number of bytes currently in use and the total memory available. Acceptable

abbreviations: MEM, M.

MODULES
 DISPLAY MODULES lists information for all installed modules. Acceptable abbreviations: MODULE, MOD.

OCOUNTS
 DISPLAY OCOUNTS prints the current output configuration update count. Acceptable abbreviations: OCOUNT, OC.

OEMID
 DISPLAY OEMID displays an OEM identification number. This option is used only for custom OEM versions of

DAPL.

OPTIONS
 DISPLAY OPTIONS prints the state of all of the configuration options selectable using the OPTIONSOPTIONSOPTIONSOPTIONS command.

The options are displayed in a variable number of lines, as a sequence of expressions in the form
“keyword=value” separated by a variable number of blanks. The keywords can appear in any order. Acceptable
abbreviations: OPTIONS, OPT.

OUTPORT
 DISPLAY OUTPORT prints the current configuration of the output ports. Acceptable abbreviation: OUTPORTS.

OUTPUTS
 DISPLAY OUTPUTS lists the output procedures. Acceptable abbreviations: OUTPUT, OUT.

OVERFLOWQ
 DISPLAY OVERFLOWQ indicates whether a sampling overflow has occurred. The command prints a long integer.

If the number is zero, no loss of data has occurred. If the number is nonzero, it is the sample number of the first
sample that was lost when the internal buffers overflowed. The number is the sample count from the input
configuration most recently started by a STARTSTARTSTARTSTART command. See Chapter 14. Acceptable abbreviations:
OVERFLOW, OVER.

PIPES
 DISPLAY PIPES prints the status of all the defined pipes including each pipe’s type and number of items

currently stored in the pipe. Note that if several tasks read from a pipe, the number of entries indicates the
number of samples which have not yet been processed by all tasks reading data from the pipe. Acceptable
abbreviations: PIPE, P.

206 Chapter 19 DAPL Commands: DISPLAY

PROCEDURES
 DISPLAY PROCEDURES lists the names, type, and activity of all input, output, and processing configurations

which are defined. Acceptable abbreviations: PROCEDURE, PROC.

SERIAL
 DISPLAY SERIAL displays the DAP serial number.

STARTS
 DISPLAY START lists the currently active start groups, and the names of the input, output and processing

procedures that are included in each group. Acceptable abbreviation: START.

STRINGS
 DISPLAY STRINGS lists the names, data type, and values of all shared strings. Acceptable abbreviation:
STRING, STR.

SYMBOLS
 DISPLAY SYMBOLS prints all user-defined names known to the system. Acceptable abbreviations: SYMBOL, SYM.

SYSLOG [<n> [, <m>]] [ID=<hex> [count]]
 DISPLAY SYSLOG and its variations display error and warning messages stored in the system event log.

Locations in the log are indexed starting at 0 for the newest message, and each successive index 1,2, etc. will
access an older message. To specify an index or a range of index values, use the index parameters n and m,
where m is greater than n. If you know a message’s hexadecimal ID code, instead of specifying an index relative
to the head of the list, you can specify the ID of the first message and select the number of messages to display.
They will be presented in the order oldest to newest.

TMEMORY
 DISPLAY TMEMORY (terse memory) gives a condensed version of the DISPLAY MEMORYDISPLAY MEMORYDISPLAY MEMORYDISPLAY MEMORY information. This

command prints a single integer representing the percentage of memory currently in use. If this number is close
to 100, almost all available memory is allocated for buffer and data sample storage. Acceptable abbreviations:
TMEM, TM.

TRIGGERS
 DISPLAY TRIGGERS displays the names, operating modes, and properties of all defined software triggers.

Acceptable abbreviations: TRIGGER, TRIG.

UNDERFLOWQ
 DISPLAY UNDERFLOWQ indicates whether an updating underflow has occurred. The command prints a long

integer. If the number is zero, underflow has not occurred. If the number is nonzero, the number is the sample
number at which underflow occurred. The number is the update count from the output configuration most
recently started by a STARTSTARTSTARTSTART command. See Chapter 14. Acceptable abbreviations: UNDERFLOW, UNDER.

VARIABLES
 DISPLAY VARIABLES displays the names, data types and current values of all shared variables. Acceptable

abbreviations: VARIABLE, VAR.

VECTORS
 DISPLAY VECTORS displays the names, data types and lengths of user-defined vectors. Acceptable

abbreviations: VECTOR, VEC.

Chapter 19 DAPL Commands: DISPLAY 207

WMSG
 DISPLAY WMSG prints the last warning message. The message is cleared after it is displayed.

WNUM
 DISPLAY WNUM prints a number indicating whether a system warning has occurred since the last DISPLAY
WNUM command. If the number is zero, no warning has occurred. If the number is nonzero, a warning has
occurred. Nonzero numbers are warning codes that can be found in the Error Messages supplement to this
manual. Displaying the value of WNUM resets the warning flag to zero. The occurrence of a buffer overflow or
underflow does not affect the warning flag.

See Also
SDISPLAYSDISPLAYSDISPLAYSDISPLAY

208 Chapter 19 DAPL Commands: DLIMIT

DLIMIT

Define a task that detects data change events.

DLIMIT (<in_pipe>, <region1>, <trigger> [,<region2>])

Parameters
<in_pipe>

Input data pipe.
WORD PIPE | LONG PIPE | FLOAT PIPE | DOUBLE PIPE

<region1>
A specification for the triggering condition.
REGION

<trigger>
The trigger asserted whenever a difference satisfying <region1> is found.
TRIGGER

<region2>
An optional specification of holdoff (hysteresis) to avoid spurious re-triggering.
REGION

Description
DLIMITDLIMITDLIMITDLIMIT computes differences between consecutive data values from pipe <in_pipe>. When a difference
satisfies the <region1> condition, an event is asserted in <trigger>. For example,

OUTSIDE, -255.0, 255.0

This specifies reporting an event by asserting <trigger> when the amount of change from one sample to the next
is greater than 255 in magnitude. The data types of region specifications and the data stream must match.

<region2> is an optional region specification that provides trigger hysteresis. After the trigger is asserted, no
subsequent trigger events are reported while differences between consecutive values satisfy the <region2>
holdoff condition. Specifying <region2> can prevent multiple triggering when a signal change covers more than
one sample. <region2> can be the same as region <region1>, which means that the rate of change must
decrease to less than the original triggering condition, but spurious triggering events can still occur if the data set is
noisy. See Chapter 16 for more details about regions.

The two limit values for a REGION can be variable. The location within a data stream where change to a REGION
variable takes effect is indeterminate, because variable changes are not synchronized with task processing. The
variable change can appear to be shifted either forward or backward in time by an unpredictable number of sample
positions, depending on how much unprocessed data are in each task’s data buffers.

Chapter 19 DAPL Commands: DLIMIT 209

Examples

DLIMIT (IP5, OUTSIDE, 0, 0, T2)

Scan input channel pipe IP5 for any changes between consecutive sample values. Record each change event in
trigger T2.

DLIMIT (P1, OUTSIDE –250.0, 250.0, T1, OUTSIDE –60.0, 60.0)

Scan P1 for changes less than –250.0 or greater than 250.0. After an event is asserted in trigger T1, the trigger
cannot be re-asserted until the rate of change first reduces to less than 60.0 in magnitude.

See Also
LIMITLIMITLIMITLIMIT, LOGICLOGICLOGICLOGIC

210 Chapter 19 DAPL Commands: EDIT

EDIT

Modify input configurations and output configurations.

EDIT <proc_name> <proc_command>

ED <proc_name> <proc_command>

Modify com pipes.

EDIT <cpipe_name> <cpipe_parameters>

ED <cpipe_name> <cpipe_parameters>

Parameters
<proc_name>

The name of the input or output configuration to change.

<proc_command>
A configuration command as it would appear in an input configuration or output configuration.

<cpipe_name>
The name of the communications pipe to change.

<cpipe_parameters>
Communications pipe configuration parameters.

Description
EDITEDITEDITEDIT modifies an input configuration, output configuration, or communications pipe.

For input or output configurations, the <proc_command> has the same form as a configuration command in the
original input or output configuration. For input configurations, <proc_command> can be a SETSETSETSET, TIMETIMETIMETIME or COUNTCOUNTCOUNTCOUNT
command. For output configurations, <proc_command> can be a SETSETSETSET, TIMETIMETIMETIME, COUNTCOUNTCOUNTCOUNT, CYCLECYCLECYCLECYCLE or OUTPUTWAITOUTPUTWAITOUTPUTWAITOUTPUTWAIT
command. See the command references pages for information about these individual command types.

For a communications pipe, <cpipe_parameters> can be BLOCKING = <num> or
WIDTH=LONG|WORD|BYTE|FLOAT.

The EDITEDITEDITEDIT command can only change a configuration or com pipe when it is inactive. In particular, the data type of
a communications pipe can be changed only when the pipe is empty.

Examples

EDIT INPR SET IP4 S3 10

Change input pipe 4 of configuration INPR to input S3 with a gain of 10.

Chapter 19 DAPL Commands: EDIT 211

EDIT A TIME 1000

Change the update time of output configuration A to 1 millisecond per update.

EDIT $BinOut WIDTH=LONG

Change the width of $BinOut to long for sending long values to the PC.

See Also
ERASEERASEERASEERASE, IDEFINEIDEFINEIDEFINEIDEFINE, ODEFINEODEFINEODEFINEODEFINE, RESETRESETRESETRESET

212 Chapter 19 DAPL Commands: EMPTY

EMPTY

Flush all data from one or more pipes.

EMPTY <pipe_name> [, <pipe_name>]*

Parameters
<pipe_name>

The pipe from which data are flushed.
WORD PIPE | LONG PIPE | FLOAT PIPE | DOUBLE PIPE

Description
EMPTYEMPTYEMPTYEMPTY flushes all data from one or more pipes.

Only user-defined pipes and output communications pipes can be emptied. The communications pipes $SysIn ,
$SysOut, and $BinIn cannot be emptied.

Example

EMPTY P1,P2

Flush pipes P1 and P2.

See Also
ERASEERASEERASEERASE, RESETRESETRESETRESET, STOPSTOPSTOPSTOP

Chapter 19 DAPL Commands: END 213

END

Terminate an input, output, or processing configuration definition.

END

Description
The ENDENDENDEND command terminates a group of statements which define an input sampling, output updating, or
processing configuration.

Example

PDEFINE A
 ...
END

End the definition mode for defining the processing procedure A.

See Also
IDEFINEIDEFINEIDEFINEIDEFINE, ODEFINEODEFINEODEFINEODEFINE, PDEFINEPDEFINEPDEFINEPDEFINE, STOPSTOPSTOPSTOP

214 Chapter 19 DAPL Commands: ERASE

ERASE

Delete user-defined symbols.

ERASE <symbol> [, <symbol>]*

Parameters
<symbol>

User-defined symbol or list of symbols.

Description
ERASEERASEERASEERASE deletes a user-defined symbol or list of symbols so that the symbol or symbols can be redefined. ERASEERASEERASEERASE
accepts any named symbols except those for communication pipes. When a symbol is deleted, it is removed from
memory.

Erasing the symbol for a downloaded command makes the command unavailable. Erasing the module containing
one or more downloaded commands removes all commands within that module from memory.

Example

ERASE TCOM

Remove the trigger pipe named TCOM.

See Also
RESETRESETRESETRESET, EDITEDITEDITEDIT

Chapter 19 DAPL Commands: FFT 215

FFT

Define a task that calculates fast Fourier transforms of blocks of data.

FFT (<mode>, <m>, <window>, <pipeinR> [, <pipeinI>] ,
 <pipeoutR> [, <pipeoutI>])

Parameters
<mode>

A number in the range 0 to 6 that selects the operating mode of the transform.
WORD CONSTANT

<m>
A number that determines the size of a block of input data.
WORD CONSTANT

<window>
A constant or a vector specifying the window operation used by the transform.
WORD CONSTANT |
WORD VECTOR | LONG VECTOR | FLOAT VECTOR | DOUBLE VECTOR

<pipeinR>,<pipeinI>,<pipeoutR>,<pipeoutI>,
Data input and output pipes, according to the operating mode.
WORD PIPE | LONG PIPE | FLOAT PIPE | DOUBLE PIPE

Description
An FFTFFTFFTFFT task calculates a Discrete Fourier Transform of data blocks using a Fast Fourier Transform algorithm. In
addition to the basic transform, the most commonly required pre-processing and post-processing operations also
are provided.

All variants of the FFTFFTFFTFFT command use the same form for the three initial parameters.

FFT(<mode>, <size>, <window>, …)

The final two to four parameters specify the input and output data streams. The number of pipes required depends
on the value of the mode parameter.

Mode 0
real ---> complex

FFT(0, … , Re_in, Re_out, Im_out)

Mode 1
complex ---> complex

FFT(1, … , Re_in, Im_in, Re_out, Im_out)

Mode 2 reverse
complex ---> real

FFT(2, … , Re_in, Im_in, Re_out)

216 Chapter 19 DAPL Commands: FFT

Mode 3 reverse
complex ---> complex

FFT(3, … , Re_in, Im_in, Re_out, Im_out)

Mode 4
real ---> power

FFT(4, … , Re_in, Pow_out)

Mode 5
real ---> magnitude

FFT(5, … , Re_in, Mag_out)

Mode 6
real ---> polar

FFT(6, … , Re_in, Mag_out, Phs_out)

The data types of all input and output streams must match, with the one exception of the output power mode 4,
which allows 32-bit LONG output to be used with 16-bit WORD input because of a large output range. The
calculations are specialized for the type of processed data:

• 16-bit fixed point (WORD) 32 bit internal
• 32-bit fixed point (LONG) 64 bit internal
• 32-bit floating point (FLOAT) 64 bit internal
• 64-bit floating point (DOUBLE) 64 bit internal

The floating point unit (FPU) of the processor is used extensively for LONG, FLOAT, and DOUBLE data types. The
FLOAT and DOUBLE data types use the same internal representation, and apply the same methods, so they differ
only in the representation and transfer of their input and output data.

Mathematically, forward and reverse transforms are inverse operations, provided that an additional factor of 1/N
is applied somewhere, where N is the number of terms in an input data block. The FFTFFTFFTFFT command applies this
scaling factor to all forward transforms (in all modes except 2 and 3).

Operating Modes Without Post-Processing
The <mode> parameter determines the manner in which the command operates: data requirements for input and
output pipes, transform direction, and the post-transform processing applied to the output data.

The first four operating modes provide basic transforms without post-processing operations. The transforms can be
applied in the forward direction (time domain to frequency domain) or in the reverse direction (frequency domain
to time domain). The differences affect the phase and scaling of terms.

The following table summarizes these modes and their requirements for input and output data pipes.

Chapter 19 DAPL Commands: FFT 217

FFT Modes without Data Post-Processing
Description <pipeinR> <pipeinI> <pipeoutR> <pipeoutI>

Mode 0
 (Forward
 Real in,
 complex out)

WORD
LONG
FLOAT
DOUBLE

 WORD
LONG
FLOAT
DOUBLE

WORD
LONG
FLOAT
DOUBLE

Mode 1
 (Forward
 Complex in,
 complex out)

WORD
LONG
FLOAT
DOUBLE

WORD
LONG
FLOAT
DOUBLE

WORD
LONG
FLOAT
DOUBLE

WORD
LONG
FLOAT
DOUBLE

Mode 2
 (Reverse
 Complex in,
 real out)

WORD
LONG
FLOAT
DOUBLE

WORD
LONG
FLOAT
DOUBLE

WORD
LONG
FLOAT
DOUBLE

Mode 3
 (Reverse
 Complex in,
 complex out)

WORD
LONG
FLOAT
DOUBLE

WORD
LONG
FLOAT
DOUBLE

WORD
LONG
FLOAT
DOUBLE

WORD
LONG
FLOAT
DOUBLE

The input data are provided in one or two data pipes, <pipeinR> and <pipeinI>. For most applications, the data
derive from measurements of real processes, so only the real-valued data from pipe <pipeinR> are needed. For
some other applications, <pipeinI> is needed to provide imaginary or quadrature terms. Omit parameter
<pipeinI> for modes that do not use it.

These modes produce complex output for either real or complex input, with the resulting data blocks equal in
length to the input data blocks. However, it is possible that the resulting imaginary terms contain no information
when certain data symmetries are present in the complex input data. For this special case, the imaginary output
terms can be suppressed, with no loss of information, by using using <mode>=2. Omit parameter <pipeoutI>
from the parameter list when it is not needed.

Operating Modes With Post-Processing
The other three operating modes perform transforms in the forward direction (from time to frequency) and then
apply post-processing operations to make spectrum analysis easier. The post-processing operations are meaningful
only for the case of forward transforms of real-valued inputs, so the parameter <pipeinI> is not used. Processed
results are returned, rather than the raw transform data.

Transforms of real data result in output blocks with symmetry properties such that no new information appears in
the second half of the data. To save time and storage, the redundant data are omitted during post processing, and
the processed output blocks are half as long as the original input blocks. The output processing options are:

• Mode 4 - Power. Signal power for each frequency is calculated by squaring the real and imaginary terms and
combining the two squared values. The part of the signal power artificially reflected into image frequencies
above the Nyquist frequency of the sampling is recombined. Because of squaring, the range of output values can
be large, so be careful with data scaling.

218 Chapter 19 DAPL Commands: FFT

• Mode 5 - Magnitude. Basically, this is the same thing as mode 4 power, but with an additional square root
operation. This tends to eliminate scaling problems, but requires extra computing time.

• Mode 6 – Magnitude and phase angle. The magnitude term is the same as for mode 6. In addition, the ratio of
the real and imaginary terms from the original transform is analyzed to determine the phase angle associated
with the frequency. The phase angle for the artifact frequency above the Nyquist frequency is equal in magnitude
and opposite in sign, and is ignored. The angle is expressed in radians. For angle terms in fixed-point data types,
the range of the integer values corresponds to the angle range –pi to +pi.

FFT Modes with Data Post-Processing
Description <pipeinR>

(signal)
<pipeinI> <pipeoutR>

(power or
magnitude)

<pipeoutI>
(angle)

Mode 4
 (Forward, real in
 Output = power
 density)

WORD
LONG
FLOAT
DOUBLE

 LONG
LONG *
FLOAT
DOUBLE

Mode 5
 (Forward, real in
 Output = magnitude)

WORD
LONG
FLOAT
DOUBLE

 WORD
LONG
FLOAT
DOUBLE

Mode 6
 (Forward, real in
 Outputs = magnitude
 and angle)

WORD
LONG
FLOAT
DOUBLE

 WORD
LONG
FLOAT
DOUBLE

WORD
LONG
FLOAT
DOUBLE

* Use caution to avoid saturated large values.

Data Block Sizes
For all operating modes, the second FFTFFTFFTFFT command parameter <m> indirectly specifies the size of the input data
blocks. The lengths of the data blocks are a power of 2, so the actual size is 2 to the power of <m>. The value of
<m> is specified in the task parameter list, as summarized in the following list.

Chapter 19 DAPL Commands: FFT 219

<m><m><m><m> block sizeblock sizeblock sizeblock size
2 4
3 8
4 16
5 32
6 64
7 128
8 256
9 512
10 1024
11 2048
12 4096
13 8192
14 16384

Windowing
The <window> parameter is a constant or a vector specifying the window operation used by the transform.
Windowing provides a term-by-term scaling of the original input data before applying the transform. This
sometimes has the advantage of reducing spectrum distortions that result from chopping the data into separate
blocks for analysis, but also causes some spreading and reduction of peak values. If these distortions are important,
they must be taken into consideration when analyzing the results.

A window operation is represented by a vector that multiplies input data term by term. For the most common
window types, a code number can be entered instead of a vector, and the corresponding vector is constructed
automatically. The code numbers for predefined window types are:

 Window typesWindow typesWindow typesWindow types

0 do not use a window (equivalently, use a Rectangular window).
1 use a von Hann window.
2 use a Hamming window.
3 use a Bartlett window.
4 use a Blackman window.

When the <window> parameter specifies a named VECTOR that explicitly defines a window vector, that vector can
be coded in any of the supported data types for any input data type. The data types will be converted internally to
the appropriate type for run-time processing. For WORD window terms, the upper bound integer value 32768
represents the real number 1.0, and smaller integer values proportionally represent fractions. LONG window terms
are similar, except that the upper bound integer value is 2147483647. For floating point data types, the upper
bound value is 1.0, and fractions are represented in a natural notation.

Aliasing
To avoid aliasing, the sampling rate must be chosen so that frequencies of all relevant phenomena are below the
Nyquist frequency appearing at term N/2, where N is the number of terms in a complete spectrum block. The
spectrum of a real-valued input signal has some special symmetry properties. The term at location 0 is always real-
valued, and represents a constant offset (zero frequency) component. For all other terms, the term at N/2 + k is
equal to the term at N/2 - k except for the sign on the imaginary part. In other words, the terms beyond the

220 Chapter 19 DAPL Commands: FFT

Nyquist frequency provide no additional spectral information, which is why the post-processing modes return only
half-length blocks.

The symmetry phenomenon works both ways, however, and can lead to some surprises for the unwary. The
transform formulas have no way to know from the sampled data whether the original signal was above or below
the Nyquist frequency, so both frequencies appear in the spectrum. For example, suppose the real-valued input
data block for a 256-term FFT has a cosine wave with peak value 10000 and frequency 6*(2 * π / 256) radians per
second, sampled at 1/256 second intervals. Examining a mode 0 FFT, one would expect to see a frequency peak of
magnitude 10000 in location 6 of the raw transform data, right? Well, maybe not. Half of the wave appears at
location 6, but the other half appears in the symmetric image at location 251. The chapter on the Fast Fourier
Transform in this manual discusses the aliasing phenomena in more detail.

Examples

FFT (0, 8, 0, P1r, P2r, P2i)

Mode 0, forward transform of real data. Read blocks of 256 data values from pipe P1r, perform a forward
transform, and place the complex results in pipes P2r and P2i. No window vector is used.

FFT (1, 8, 2, P1r, P1i, P2r, P2i)

Mode 1, forward transform of complex data. Read blocks of 256 complex data values from pipe P1r and P1i,
perform a forward transform, and place the complex results in pipes P2r and P2i. A Hamming window is applied
to the signal data before the transform.

FFT (2, 10, 0, P1r, P1i, P2r)

Mode 2, reverse transform of complex data preserving only real terms. Read blocks of 1024 data values from
pipes P1r and P1i, where these data have special symmetry properties. Perform an inverse transform, and place
the real results in pipe P2r, discarding the meaningless imaginary terms. No window vector is used.

FFT (3, 12, 0, P1r, P1i, P2r, P2i)

Mode 3, reverse transform of complex data. Read blocks of 4096 data values from pipes P1r and P1i. Perform an
inverse transform, placing the complex results in pipe P2r and P2i. No window vector is used.

FFT (4, 9, 3, P1r, PPow)

Mode 4, forward transform of real data converted to power spectrum. Read blocks of 512 data values from pipe
P1r, perform a forward transform, and place the 256 power spectral density terms in pipe PPow. Apply a
Blackman window before applying the transform.

FFT (5, 8, 1, P1r, PMag)

Mode 5, forward transform of real data converted to magnitude spectrum. Read blocks of 256 data values from
pipe P1r, perform a forward transform, and place the 128 magnitude terms in pipe PMag. Apply a von Hann
window before applying the transform.

FFT (6, 10, 0, P1r, PMag, PPhase)

Mode 6, forward transform of real data converted to polar form. Read blocks of 1024 data values from pipe P1r,
perform a forward transform, and place the 512 magnitude and phase terms in pipes PMag and PPhase. No
window vector is used.

Chapter 19 DAPL Commands: FFT 221

See Also
See Chapter 18 “Fast Fourier Transform” for more information about frequency spectra, sampling, aliasing effects,
and window operators.

222 Chapter 19 DAPL Commands: FILL

FILL

Add data from a data list to a specified pipe.

FILL <pipe_name> <data> [[,] <data>]*

F <pipe_name> <data> [[,] <data>]*

Parameters
<pipe_name>

The pipe to be filled.
WORD PIPE | LONG PIPE | FLOAT PIPE | DOUBLE PIPE

<data>
Data to be added to the specified pipe.
WORD CONSTANT | LONG CONSTANT | FLOAT CONSTANT

Description
FILLFILLFILLFILL adds the data in its data list to a specified pipe. FILLFILLFILLFILL typically is used to fill a pipe with known data. It can
be used for time-shifting a data stream, establishing initial conditions, or to build a known signal waveform. You
cannot use the FILLFILLFILLFILL command to insert data into the reserved $SysIn or $SysOut communication pipes.

Values are converted to the appropriate data type for placing into the pipe. The initializer values must be
compatible with the data type of the pipe.

For FILLFILLFILLFILL commands that would exceed the maximum line length, use a sequence of FILLFILLFILLFILL commands.

Examples

FILL P1 35 70 105 140

Place four values into word pipe P1.

FILL PF1 35 70.5 105.25 14.0175e-12
Place four values into floating point pipe PF1.

See Also
EMPTEMPTEMPTEMPTYYYY

Chapter 19 DAPL Commands: FINDMAX 223

FINDMAX

Define a task that determines the maximum value in an interval.

FINDMAX (<in_pipe>, <n>, <region>, <out_pipe> [, <ix_pipe>] [, <ix_trig>])

Parameters
<in_pipe>

Input data pipe.
WORD PIPE | LONG PIPE | FLOAT PIPE | DOUBLE PIPE

<n>
The number of values in each block from <in_pipe>.
WORD CONSTANT

<region>
The region that determines which data positions are scanned.
REGION specifier

<out_pipe>
Output data pipe for the maximum value observed.
WORD PIPE | LONG PIPE | FLOAT PIPE | DOUBLE PIPE

<ix_pipe>
Optional output pipe for the block index of the maximum value.
WORD PIPE | LONG PIPE

<ix_trig>
Optional software trigger for the location of the maximum value.
TRIGGER

Description
FINDMAXFINDMAXFINDMAXFINDMAX reads blocks of <n> values from the <in_pipe>. The maximum value observed in the selected terms is
copied to <out_pipe>, so there is one output value per input block. The data types of <in_pipe> and
<out_pipe> must match. Terms whose indices are in <region> are scanned. Terms are indexed from 0 to <n>-
1. If relevant peaks can occur at any location, specify the full range 0 to <n>-1.

Note: While a REGION specification is applied to data values in most other DAPL commands, the FINDMAX
command applies it to the index of the data values.

One or two optional additional parameters can be specified to record the position of the maximum value observed
within the data block. If <ix_pipe> is specified, the index for the maximum value is placed into this pipe. The
indexing is the same scheme used by the REGION specification to select data for scanning. If <ix_trig> is
specified, an event will be recorded in this trigger indicating the location in the original data stream where the
maximum value was detected. You can use the trigger in a command such as WAIT to recover data at this same
relative position in any data stream. If neither optional parameter is specified, information about the location of the
peak is discarded.

224 Chapter 19 DAPL Commands: FINDMAX

This command can be used after an FFTFFTFFTFFT in mode 4 or mode 5 to determine the location of a peak in the frequency
spectrum. If the particular peak of interest is not the highest one, the peak of interest can be isolated using
<region>.

Examples

FINDMAX (P1, 512, INSIDE, 50, 100, P2)

Read blocks of 512 values from pipe P1. Place the largest value observed from indexed locations 50 to 100 into
pipe P2.

FINDMAX (P1, 128, INSIDE, 0, 127, IXTRIG, P3)

Read blocks of 128 values from pipe P1. Place the largest value anywhere in the block into pipe P2. Place the
index of the largest value into P3. Also assert an event at the corresponding location using trigger IXTRIG, so
that tasks can locate corresponding data in other signals.

See Also
FFTFFTFFTFFT,,,, WAITWAITWAITWAIT

Chapter 19 DAPL Commands: FIRFILTER 225

FIRFILTER

Define a task to calculate filtered values using a finite impulse response filter.

FIRFILTER (<in_pipe>, <coeffs>, <length>, <scale>, <decim>,
 <phase>, <out_pipe> [,<take>, <skip>])

Parameters
<pipein>

A data pipe providing a stream of samples to be filtered.
WORD PIPE | LONG PIPE | FLOAT PIPE | DOUBLE PIPE

<coeffs>
A vector specifying the filter characteristic.
WORD VECTOR | LONG VECTOR | FLOAT VECTOR | DOUBLE VECTOR

<length>
The number of terms in the coefficient vector.
WORD CONSTANT

<scale>
A scaling factor applied to each output value.
WORD CONSTANT | LONG CONSTANT | FLOAT CONSTANT | DOUBLE CONSTANT

<decim>
A number that specifies one-out-of-n decimation.
WORD CONSTANT

<phase>
A number specifying a time-shift correction.
WORD CONSTANT

<out_pipe>
A data pipe where samples of the filtered data stream are placed.
WORD PIPE | LONG PIPE | FLOAT PIPE | DOUBLE PIPE

<take>
Number of data values to retain.
WORD CONSTANT

<skip>
Number of data values to skip.
WORD CONSTANT

Description
FIRFILTERFIRFILTERFIRFILTERFIRFILTER applies a finite impulse response digital filter with <length> number of taps to input data from
<in_pipe>. The vector <coeffs> defines the filter characteristic. The elements of <coeffs> are multiplied with
successive values from <in_pipe>, the products are added, and the final sum is divided by <scale> to produce
each result. One result is retained for each sequence of <decim> input values. Optionally, the number of retained

226 Chapter 19 DAPL Commands: FIRFILTER

results can be further reduced by applying the <take> and <skip> parameters. Each remaining result is placed
into <out_pipe>.

The maximum values for the <length> parameter depend on the input data type.

• For WORD data, it must be no larger than 1024.
• For LONG, FLOAT, or DOUBLE data, it must be no larger than 32767.

The <length> value must correspond exactly to the number of elements in <coeffs>. If the special value 0 is
used for the <length> parameter, the filter length is automatically set equal to the length of the vector. Otherwise,
any inconsistency is diagnosed.

The filter produces an output data stream of the same data type as the stream that it receives. The values in the
<coeffs> vector represent signed binary fractions in a numeric notation appropriate for the input and output data
type.

• For WORD data, the coefficient vector must be WORD type. The number 32768 represents the value 1.0, and the
filter coefficients in the range –32767 to +32767 proportionally represent fractions less than 1.0 in absolute
value. As a rule of thumb, to normalize the filter for unity gain at zero frequency, scale the coefficients so that
their sum equals 32767 times the <scale> factor. To guarantee freedom from overflow errors, scale the sum of
the absolute values of the coefficients to be less than 32767 times <scale>.

• For LONG data, the coefficient vector must be LONG type. The number 2147483648 (2 to the 31st power)
represents the value 1.0, and the filter coefficients in the range -2147483647 to +2147483647 proportionally
represent fractions less than 1.0 in absolute value. As a rule of thumb, to normalize the filter for unity gain at
zero frequency, scale the coefficients so that their sum equals 2147483647 times the <scale> factor. To
guarantee freedom from overflow errors, scale the sum of the absolute values of the coefficients to be less than
2147483647 times <scale>.

• For FLOAT or DOUBLE data, the coefficient vector must be matching type. Specify the coefficients in natural
decimal notation. Normalize the filter for unity gain at zero frequency by scaling the coefficients so that their
sum equals 1.0 times the <scale> factor.

Scaling is specified by the <scale> factor. When <length> is relatively small, a <scale> factor equal to 1 is
appropriate for all data types. The special value 0 means “use no scaling” and is equivalent to specifying the scale
factor 1. When the scale factor is 1, some optimizations are applied for the case of WORD data to achieve the
highest filtering rate. For relatively large fixed-point filters, there tend to be many very small terms and rounding
errors tend to become significant, so a <scale> factor greater than 1 allows the retention of more intermediate
precision, provided that all coefficient terms remain representable in the precision used. There are some
restrictions on the range of the <scale> parameter depending on the input data type.

• For WORD data, <scale> must be a power of two no larger than 512, and it should never exceed the first power
of two less than <length>.

• For LONG data, <scale> must be a power of two no larger than 16384.
• For FLOAT or DOUBLE data, <scale> can be any appropriate FLOAT or DOUBLE constant.

The decimation factor <decim> is a non-negative number less than <length>. When <decim> is 0 or 1, no
decimation is applied, and FIRFILTERFIRFILTERFIRFILTERFIRFILTER returns one calculated value for each input sample. When <decim> is
greater than 1, FIRFFIRFFIRFFIRFILTERILTERILTERILTER computes one value and then omits the next <decim>-1 values. Normally, decimation
is used with lowpass and bandpass filters, because fewer samples are required to represent a signal after high
frequencies are removed by filtering.

Chapter 19 DAPL Commands: FIRFILTER 227

The optional parameters <take> and <skip> apply further data reduction. If used, parameters <take> and
<skip> must both be specified. When <take> and <skip> are specified, FIRFILTERFIRFILTERFIRFILTERFIRFILTER retains <take> output
values, placing them into <out_pipe>, and then skips <skip> output values. When decimation is specified,
<take> and <skip> are applied to the data remaining after decimation is performed. In a typical application of
the <take> and <skip> parameters, an input signal must be sampled at a very high rate to preserve high
frequency information, but the results of the filtering analysis are needed less frequently, for example, to update a
Fourier Transform display in a PC graphing program. The data reduction allows the PC to keep up with the data
sent by the Data Acquisition Processor, even though the filtering is very fast and could send the PC host
everything. Note that equivalent results can be obtained without the <take> and <skip> parameters, using a
separate SKIPSKIPSKIPSKIP command, but the FIRFILTERFIRFILTERFIRFILTERFIRFILTER command is more efficient because it avoids performing
calculations that would eventually be discarded.

When the <phase> parameter is specified, the FIRFILTERFIRFILTERFIRFILTERFIRFILTER command will replicate the first computed filter value
an additional <phase> number of times prior to applying decimation. Most but not all applications of the
FIRFILTERFIRFILTERFIRFILTERFIRFILTER command use symmetric filters. These filters have desirable phase properties, but they also have the
effect of time-shifting the output. The delay is (<length>-1)/2 samples for an odd-length filter, or <length>/2
samples for an even-length filter. (Sometimes this is described as “linear phase” or “group delay” using
terminology from linear filtering theory.) For example, when using a symmetric filter with 41 taps, the first output
value calculated by the filter corresponds to the twenty-first input sample, sample number 20. If it is important to
maintain sample count synchronization for this example, the <phase> parameter should be set to 20. The
FIRFILTERFIRFILTERFIRFILTERFIRFILTER command automatically computes the appropriate correction for a symmetric filter if the <phase>
parameter is set to the special number -1. If a time shift adjustment is not important, the <phase> parameter
should be set to 0. For filter designs that are not symmetric, some other appropriate <phase> value can be
specified to compensate for the time delay to the nearest sample position. The phase corrections do not make
results appear any sooner in real time, but they make identification of features in time sequences easier, because
positions in the input and output data streams correspond.

An alternative to using a non-zero <phase> parameter is to use the FILLFILLFILLFILL command to place the required number
of extra samples into the <out_pipe> prior to starting the configuration that defines the FIRFILTERFIRFILTERFIRFILTERFIRFILTER task.
Arbitrary fill values, such as zeros, can be used.

The program FGEN can be used to generate symmetric filter data for common filter types. FGEN has an option for
calculating scaled or unscaled filter vectors of all data types.

The filtering algorithms in the FIRFILTERFIRFILTERFIRFILTERFIRFILTER command apply special optimizations when the filter has a symmetry
property, when there is no scaling, and when decimation or data reduction operations are applied. The selected
options will affect the maximum throughput rate.

228 Chapter 19 DAPL Commands: FIRFILTER

Examples

PIPE P1 WORD
FIRFILTER (IPIPE5, VEC1, 41, 0, 0, -1, P1)

Apply the symmetric filter defined by vector VEC1 to data from input channel pipe 5, with 41 stages in the filter;
apply no scaling factor or decimation; apply an initial time shift correction computed automatically from the filter
length; and send all results to WORD pipe P1.

PIPE PD1 FLOAT, PD2 FLOAT
FIRFILTER (PD1, FVEC2, 0, .7071, 4, 0, PD2, 1024, 4096)

Apply a filter of arbitrary length to data from float pipe PD1, using filter coefficients provided by the FLOAT vector
FVEC2; apply a scaling factor of 0.7071 to each result, retain every fourth result; use no initial time-shift
correction; send 1024 of the retained results to PD2, then ignore the next 4096 results, and repeat.

See Also
FIRLOWPASSFIRLOWPASSFIRLOWPASSFIRLOWPASS, RAVERAGERAVERAGERAVERAGERAVERAGE

Chapter 19 DAPL Commands: FIRLOWPASS 229

FIRLOWPASS

Define a command that applies a pre-defined lowpass FIR filter with decimation.

FIRLOWPASS (<in_pipe>, <d>, <out_pipe>)

Parameters
<in_pipe>

The pipe from which data values are read.
WORD PIPE | LONG PIPE | FLOAT PIPE | DOUBLE PIPE

<d>
A number that selects the filter vector and decimation factor used.
WORD CONSTANT

<out_pipe>
The pipe to which filtered data values are written.
WORD PIPE | LONG PIPE | FLOAT PIPE | DOUBLE PIPE

Description
The FIRLOWPASSFIRLOWPASSFIRLOWPASSFIRLOWPASS command combines high-precision lowpass filtering with a decimation operation. FIRLOWPASSFIRLOWPASSFIRLOWPASSFIRLOWPASS
is a special case of the FIRFILTERFIRFILTERFIRFILTERFIRFILTER command using pre-defined filter characteristics. The filtering is applied to the
sampled signal stream from <in_pipe>, and the filtered data stream is placed into <out_pipe>. The value of
decimation factor<d> must be in the range 2 through 12. An appropriate filter characteristic is provided
automatically according to the signal data type and the decimation factor. Data types of the input and output data
pipes must match.

FIRLOWPASSFIRLOWPASSFIRLOWPASSFIRLOWPASS is useful when filtering must completely eliminate high frequency noise, while exactly preserving
low frequency information. It is suitable for anti-aliasing applications, but the aggressive elimination of high
frequencies is sometimes more than is strictly necessary for anti-aliasing alone.

After the FIRLOWPASSFIRLOWPASSFIRLOWPASSFIRLOWPASS filtering operation is applied, the original sampling rate is higher than necessary to
completely represent the filtered signal. Decimation eliminates part of this redundancy, retaining one sample from
each group of <d> samples. The decimation causes no loss of information.

The filtering accuracy depends on the data type.

• WORD data stream: accuracy to 14 bits.
• LONG, FLOAT, or DOUBLE data stream: accuracy to 18 bits.

For example, 14 bit accuracy means that for a bipolar converter spanning the input range -8192 counts to +8192
counts, the output value is off by at most one converter count. When represented in the form of a 16 bit number,
each 14-bit converter count yields an increment of 4. Stopband output levels of +4 peak for input levels of 32768
peak correspond to 78.3 dB rejection. A passband peak output level 32764, differing from the correct peak input
level of 32768 by one converter count, corresponds to a passband gain error of 0.00104 dB.

The predefined filter characteristics are optimized to have the following properties:

• The magnitudes of frequencies up to 25% of the new Nyquist frequency (through 12.5% / <d> of the new
sampling frequency) are preserved to full filtering accuracy.

230 Chapter 19 DAPL Commands: FIRLOWPASS

• The magnitudes of frequencies beyond 75% of the new Nyquist frequency (beyond 37.5% / <d> of the new
sampling frequency) are eliminated to full filtering accuracy.

When perfect filter gain is not critical, useful signal information can be obtained past the 25% absolute flat band.
For example, the signal loss is 0.1 dB (about 1%) at approximately 30% of the Nyquist frequency, and the –3 dB
cutoff frequency is at approximately 42% of the Nyquist frequency.

Because of the symmetry property of the FIR filtering characteristic, phase shift is exactly zero for all frequencies,
but there is a time lag for the delivery of the filtered results. This can be interpreted in the frequency domain as a
constant group delay.

The following table provides information about filter bands and delays for each decimation level and data type.

Decimation Passband
Limit
(% Nyquist)

Stopband
Limit
(% Nyquist)

Data Type Total taps Delay samples
(after decimation)

(after) 50 75 ------ ------

2 25 37.5 Word

Long
Float
Double

37

53

9

13

3 16.67 25 Word

Long
Float
Double

57

79

9.33

13

4 12.5 18.75 Word

Long
Float
Double

75

105

9.25

13

5 10 15 Word

Long
Float
Double

93

129

9.2

12.8

6 8.33 12.5 Word

Long
Float
Double

113

155

9.33

12.83

7 7.14 10.71 Word

Long
Float
Double

131

181

9.28

12.85

Chapter 19 DAPL Commands: FIRLOWPASS 231

Decimation Passband
Limit
(% Nyquist)

Stopband
Limit
(% Nyquist)

Data Type Total taps Delay samples
(after decimation)

8 6.25 9.38 Word

Long
Float
Double

149

207

9.25

12.87

9 5.56 8.33 Word

Long
Float
Double

169

233

9.33

12.89

10 5 7.5 Word

Long
Float
Double

189

259

9.4

12.9

11 4.55 6.82 Word

Long
Float
Double

205

283

9.27

12.81

12 4.17 6.25 Word

Long
Float
Double

225

309

9.33

12.83

Example

FIRLOWPASS (IP3, 10, P)

Apply a lowpass filter to the data in input channel pipe IP3 and decimate by placing every tenth result into pipe P.

See Also
FIRFILTERFIRFILTERFIRFILTERFIRFILTER, RAVERAGERAVERAGERAVERAGERAVERAGE

232 Chapter 19 DAPL Commands: FORMAT

FORMAT

Define a task that sends formatted text data to the PC.

FORMAT [COUNT=<num>] [OUTPUT=<cpipe>] [HEX]
(<item> [,<item>]*)

<item> = <string> | <operator> | <numeric> [: <precision>]

<operator> = # | ## | /

<numeric> = <pipe> | <variable> | <constant>

Parameters
<num>

A positive decimal number limiting the number of lines to print.
WORD CONSTANT

<cpipe>
Communication text pipe name.

<string>
Arbitrary text enclosed in double-quotes.
STRING

<precision>
Formatting expression (see description below).

<pipe>
Pipe providing data to display.
WORD PIPE | LONG PIPE | FLOAT PIPE | DOUBLE PIPE

<variable>
Variable providing data to display.
WORD VARIABLE | LONG VARIABLE | FLOAT VARIABLE | DOUBLE VARIABLE

<constant>
Named or numeric constant value to display.
WORD CONSTANT | LONG CONSTANT | FLOAT CONSTANT | DOUBLE CONSTANT

Description
FORMATFORMATFORMATFORMAT builds formatted print lines and sends the text to the PC. A binary data transfer is more efficient and best
for most finished applications; but FORMATFORMATFORMATFORMAT is very useful for quick tabulated listings during application testing and
development

FORMATFORMATFORMATFORMAT allows some complicated parameter sequences, but in its simplest form, it requires only a list of pipe
names—for example:

Chapter 19 DAPL Commands: FORMAT 233

FORMAT (P1, P2)

When a FORMATFORMATFORMATFORMAT task is active, it looks for new data from each data source in sequence. The values of constants
and variables are always available, but FORMATFORMATFORMATFORMAT must sometimes wait for data to appear in data pipes. FORMATFORMATFORMATFORMAT
takes a value from each data source, then prints the set of values on a single line.

FORMATFORMATFORMATFORMAT is unusual in its handling of data pipes. For all other commands, each reference to a pipe produces a
separate copy of the entire data stream. For the FORMATFORMATFORMATFORMAT command, multiple references to a data source result in
items being taken in sequence from one stream. If, for example, the data sequence 1, 2, 3, 4, 5 etc. is loaded into
pipe P1, the task

FORMAT(P1, P1, P1, P1)
will yield the display lines

 1 2 3 4
 5 6 7 8
 9 10 11 12

 etc.

and not the display lines

 1 1 1 1
 2 2 2 2
 3 3 3 3

 etc.

Avoid multiple references to an input channel pipe with a channel list. These are confusing, because each
reference extracts data for a different channel.

The COUNT, OUTPUT and HEX options can provide additional control over FORMATFORMATFORMATFORMAT command operation. Usually
these options are omitted.

• If a COUNT option is specified, the FORMFORMFORMFORMATATATAT task delivers <num> lines and then terminates. If COUNT is omitted,
the FORMATFORMATFORMATFORMAT task prints until stopped by a STOPSTOPSTOPSTOP or RESETRESETRESETRESET command. COUNT is useful for retaining just a few
items when otherwise excessive amounts of data would be generated. Beware, after the COUNT condition is
satisfied, the task suspends and does not read new data. This could result in a data backlog that forces other
processing to stop.

• Use the OUTPUT option to send the formatted lines to an alternative communication pipe <cpipe> rather than
the default $SysOut pipe.

• If the HEX keyword option is specified, fixed-point values are displayed using a hexadecimal notation. No
<precision> expressions can be applied to hex integer formats.

There is no formal limit on the number of items in the FORMATFORMATFORMATFORMAT parameter list, but there is a practical limit. The
maximum number of characters in a line is 236. If lines are too long, they can be split into multiple FORMATFORMATFORMATFORMAT tasks,
or use the slash operator code to break the lines into shorter pieces. The DAPL system will keep print lines from
multiple FORMATFORMATFORMATFORMAT tasks intact, but the order in which these lines are delivered is unpredictable.

Besides pipes, scalar values can also appear in a FORMATFORMATFORMATFORMAT command parameter list. The most current value of a
variable is fetched as needed. Avoid displaying values of variables or constants without any pipes. Because there
are no delays, a huge number of lines can be generated.

Strings are sometimes useful for labels or for interjecting separator characters. The text from the string is copied
into the formatted lines in the position where the string appears in the parameter list. Enclose the text with double-
quote characters.

234 Chapter 19 DAPL Commands: FORMAT

The <operator> notations provide some additional line-formatting options. Place the #, ##, or / operator into the
parameter list in the same manner as other parameter list items, including the comma separators.

• # causes FORMATFORMATFORMATFORMAT to generate a line number in a 16-bit decimal notation.
• ## causes FORMATFORMATFORMATFORMAT to generate a line number in a 32-bit decimal notation.
• / causes FORMATFORMATFORMATFORMAT to split subsequent items onto a new text line. This new line is not counted as a separate line

for purposes of the COUNT option.

Display of numeric parameter items can be modified using a <precision> notation. The notation is separated
from the pipe, variable or constant parameter by a colon character. The following precision notations are supported
for fixed point data:

• for WORD values, the precision notation is a decimal integer in the range of 0 through 5.
• for LONG values, the precision notation is a decimal integer in the range of 0 through 14.

The decimal number specifies a position, counting from the right, where a decimal point is to be inserted in the
sequence of digits. If the number is too small, fill zeroes are also inserted. This looks like scaling by a power of 10,
but the original value is not changed.

• for floating point values, the precision notation is a prefix letter followed by a decimal integer in the range of 0
through 14. The prefix letter E means “display with a power-of-ten exponent notation.” The prefix letter F means
“display with a fixed fraction notation.” (These codes are similar to the %e and %f formatting codes in the C
programming language.) The number specifies the number of digits to appear after the decimal point.

Examples

For these examples, presume that VT is a floating point variable containing the value 66.1, P1 is a pipe containing
word data sequence 10, 20, 30, etc., and that PF2 is a pipe containing floating point data sequence 12.345, 23.456,
34.567, etc. The lines generated by each example are illustrated below the command line.

FORMAT (#,P1,PF2)
 0 10 12.35
 1 20 23.46
 2 30 34.57
...

Display the line number and data values from pipes P1 and PF2 using default formats and options.

FORMAT COUNT=2 (“ ITEM“,##,P1:3,PF2:F3)
 ITEM 0 .010 12.345
 ITEM 1 .020 23.456

Display line counts and values from pipes P1 and PF2, formatting both values to show three digits after a decimal
point, and ending the listing after two lines.

FORMAT (“ MEASUREMENT “,P1:4,” WITH OFFSET “,VT:F1)
 MEASUREMENT .0010 WITH OFFSET 66.1
 MEASUREMENT .0020 WITH OFFSET 66.1
...

Display labeled word values from pipes P1 with inserted decimal point preceding four digits, and show
corresponding values from variable VT using a fixed fraction notation.

Chapter 19 DAPL Commands: FORMAT 235

FORMAT HEX (P1, /, “ “, PF2:E5)
 000A
 1.23450E1
 0014
 2.34560E1
 001E
 3.45670E1
...

Display fixed point values using a hexadecimal notation, and floating point values on a separate offset line using
an exponent notation.

See Also
MERGEMERGEMERGEMERGE

236 Chapter 19 DAPL Commands: FREQUENCY

FREQUENCY

Define a task that determines the number of trigger assertions per block of samples.

FREQUENCY (<trigger>, <length>, <out_pipe>)

Parameters
<trigger>

The trigger being examined.
TRIGGER

<length>
A value that specifies the size of the sample block.
WORD CONSTANT | LONG CONSTANT

<out_pipe>
The pipe to which the number of assertions is written.
WORD PIPE | LONG PIPE

Description
FREQUENCYFREQUENCYFREQUENCYFREQUENCY counts how many trigger assertions occurred in each interval of <length> samples. The number of
assertions is sent to <out_pipe>, one number for each interval.

Example

FREQUENCY (T1, 100, P1)

Send the number of trigger assertions occurring in the intervals of 100 samples to pipe P1.

See Also
LIMITLIMITLIMITLIMIT, LOGICLOGICLOGICLOGIC, PULSECOUNTPULSECOUNTPULSECOUNTPULSECOUNT, CTRATECTRATECTRATECTRATE

Chapter 19 DAPL Commands: GROUPS 237

GROUPS

Define the number of channel groups in an input sampling configuration.

GROUPS <ngroups>

Parameters
<ngroups>

The number of input channel groups to receive data.
WORD CONSTANT

Description
The GROUPSGROUPSGROUPSGROUPS command configures the number of input channel groups that will receive input samples for a Data
Acquisition Processor that samples multiple signal pins simultaneously. The total number of data channels
is<ngroups> times the group size. The group size is determined by each individual Data Acquisition Processor
model. See the Data Acquisition Processor hardware manual for information about channel group sizes.

The CHANNELSCHANNELSCHANNELSCHANNELS command is similar to the GROUPSGROUPSGROUPSGROUPS command, except that the CHANNELSCHANNELSCHANNELSCHANNELS command implies single
channel input sampling while GROUPSGROUPSGROUPSGROUPS implies multiple channel simultaneous sampling.

An IDEFINEIDEFINEIDEFINEIDEFINE configuration should include <ngroups> number of SETSETSETSET command lines, each defining the
characteristics of one channel group. Because the IDEFINEIDEFINEIDEFINEIDEFINE configuration needs to know the number of channel
groups before other configuration information can be processed, the GROUPSGROUPSGROUPSGROUPS command should appear as one of the
first commands following the IDEFINEIDEFINEIDEFINEIDEFINE command.

Example

IDEFINE INP3
 GROUPS 3
 SET IP(0..3) SPG0
 SET IP(4..7) SPG1
 SET IP(8..11) SPG2
 TIME 20
END

Configure the input sampling to capture data for 3 channel groups, on a Data Acquisition Processor model that
samples four pins simultaneously. The total number of input data channels is 12.

See Also
SETSETSETSET, CHANNELSCHANNELSCHANNELSCHANNELS, IDEFINEIDEFINEIDEFINEIDEFINE

238 Chapter 19 DAPL Commands: GROUPSIZE

GROUPSIZE

Define the number of channels in a programmable input channel group.

GROUPSIZE <size>

Parameters
<size>

The number of input channels in a configurable input channel group.
WORD CONSTANT

Description
The GROUPSIZEGROUPSIZEGROUPSIZEGROUPSIZE command is available for Data Acquisition Processors that support software-configurable channel
group sizes. The <size> parameter specifies the number of channels in each input channel group. Only certain
restricted sizes are available, so see the Data Acquisition Processor hardware manual for information about
supported channel group sizes.

If the GROUPSIZEGROUPSIZEGROUPSIZEGROUPSIZE command is omitted, a default group size is assumed. For information about default group size,
see the Data Acquisition Processor hardware manual.

Because the IDEFINEIDEFINEIDEFINEIDEFINE configuration needs to know the channel group size before other configuration information
can be processed, the GROUPSIZEGROUPSIZEGROUPSIZEGROUPSIZE command should appear as one of the first commands following the IDEFINEIDEFINEIDEFINEIDEFINE
command.

Example

IDEFINE INP2X4
 GROUPS 2
 GROUPSIZE 4
 SET IP(0..3) SPG0
 SET IP(4..7) SPG1
 TIME 20
END

Configure the input sampling to capture data for 2 channel groups with configurable group size 4, on a Data
Acquisition Processor model that supports configurable simultaneous sampling in groups of 4 pins. The total
number of input data channels is 8.

See Also
 GROUPSGROUPSGROUPSGROUPS, IDEFINEIDEFINEIDEFINEIDEFINE

Chapter 19 DAPL Commands: HELLO 239

HELLO

Display identification information.

HELLO

Description
Prints Data Acquisition Processor hardware and software information. A single line is printed in the following
format:

*** DAPL3000 Interpreter [3.0 R1/626] Serial# 76000 ***

3.0 is the DAPL version number. R is the Data Acquisition Processor product code. 1 is the hardware version
code. 626 is the model number. 76000 is the serial number of the Data Acquisition Processor.

Note: Other configuration information also may be displayed near the end of the information line.

240 Chapter 19 DAPL Commands: HIGH

HIGH

Define a task that scans blocks of data for maximum values.

HIGH (<in_pipe>, <count>, <out_pipe1> [,<out_pipe2>])

Parameters
<in_pipe>

Input data pipe.
WORD PIPE | LONG PIPE | FLOAT PIPE | DOUBLE PIPE

<count>
A value that specifies the size of blocks to be scanned.
WORD CONSTANT | LONG CONSTANT

<out_pipe1>
Output data pipe for the maximum value from each block.
WORD PIPE | LONG PIPE | FLOAT PIPE | DOUBLE PIPE

<out_pipe2>
If specified, the pipe into which the index of the maximum value is placed.
WORD PIPE | LONG PIPE

Description
HIGHHIGHHIGHHIGH scans blocks of size <count> samples for maximum values. The maximum of each block is placed in the
pipe<out_pipe1>. If pipe<out_pipe2> is specified, indices describing the location of each maximum value are
placed in <out_pipe2>. The index numbers range from 0 to <count>-1.

When there are multiple values equal to the same maximum, the location of the first maximum is reported.

Note: The FINDMAXFINDMAXFINDMAXFINDMAX command is a specialized variant of HIGHHIGHHIGHHIGH that can restrict the search to specified index
positions.

Examples

HIGH (IPIPE3, 100, PHIGH)

Read blocks of 100 values from input channel pipe 3 and send the maximum data value in each block to pipe
PHIGH.

HIGH (P2, 1000, PMAX, PIX)
Read blocks of 1000 values from pipe P2. Send the maximum data value in each block to pipe PMAX, and send the
index of the maximum for each block to pipe PIX.

See Also
FINDMAXFINDMAXFINDMAXFINDMAX, LOWLOWLOWLOW, RANGERANGERANGERANGE, VARIANCEVARIANCEVARIANCEVARIANCE, STDDEVSTDDEVSTDDEVSTDDEV

Chapter 19 DAPL Commands: HTRIGGER (for input sampling) 241

HTRIGGER (for input sampling)

Specify the operating mode of the hardware input trigger signal.

HTRIGGER <type>

Parameters
<type>

A keyword.
ONESHOT | GATED | OFF

Description

Including HTRIGGERHTRIGGERHTRIGGERHTRIGGER in an input sampling configuration determines the manner that input sampling responds to the
external hardware input triggering signal. The <type> keyword specifies the operating mode. It must be one of the
following:

• OFF -- The default when the HTRIGGERHTRIGGERHTRIGGERHTRIGGER command is omitted from the input configuration. The DAP does
not respond to the external input triggering hardware signal. Sampling can start immediately.

• ONESHOT – Sampling can begin when the hardware signal for triggering input sampling goes active. Once
the trigger level is detected and sampling begins, the DAP no longer responds to the external hardware
signal.

• GATED – Sample clocking proceeds while the hardware trigger signal is at the active level, and is suspended
while the hardware trigger signal is at the inactive level.

The hardware trigger signal is described in the Data Acquisition Processor hardware documentation.

Example

HTRIGGER ONESHOT

The Data Acquisition Processor ignores the sampling clock until the external hardware signal for input sampling
goes active. After sampling starts, the level of the triggering signal does not matter.

See Also
CLCLOCKINGCLCLOCKINGCLCLOCKINGCLCLOCKING, CLOCKCLOCKCLOCKCLOCK, SAMPLESAMPLESAMPLESAMPLE, HTRIGGER for outputHTRIGGER for outputHTRIGGER for outputHTRIGGER for output

242 Chapter 19 DAPL Commands: HTRIGGER (for output updating)

HTRIGGER (for output updating)

Specify the operating mode of the output hardware trigger signal.

HTRIGGER <type>

Parameters
<type>

A keyword.
ONESHOT | GATED | OFF

Description

Including the HTRIGGERHTRIGGERHTRIGGERHTRIGGER in an output updating configuration determines the manner that output updating responds to
the external hardware output triggering signal. The <type> keyword specifies the operating mode and must be one
of the following:

• OFF -- The default when the HTRIGGERHTRIGGERHTRIGGERHTRIGGER command is omitted from the output configuration. The DAP does
not respond to the external hardware signal. Updating can begin when sufficient data are available in the
output buffers.

• ONESHOT – Updating can begin when the hardware output triggering signal goes active. Once the trigger
level is detected and updating is underway, the DAP no longer responds to the external hardware signal.

• GATED – Update clocking proceeds while the hardware trigger signal is at the active level, and is suspended
while the hardware trigger signal is at the inactive level.

The hardware trigger signal is described in the Data Acquisition Processor hardware documentation. It is not
recognized until the OUTPUTWAITOUTPUTWAITOUTPUTWAITOUTPUTWAIT condition is satisfied.

Example

HTRIGGER GATED

Specify that the hardware trigger allows output updates to be delivered when the external trigger level is active,
and suspends updates when the external trigger level is inactive.

See Also
CLCLOCKINGCLCLOCKINGCLCLOCKINGCLCLOCKING, CLOCKCLOCKCLOCKCLOCK, UPDATEUPDATEUPDATEUPDATE, OUTPUTWAITOUTPUTWAITOUTPUTWAITOUTPUTWAIT,,,, HTRIGGER for inputHTRIGGER for inputHTRIGGER for inputHTRIGGER for input

Chapter 19 DAPL Commands: IDEFINE 243

IDEFINE

Define and configure input sampling.

IDEFINE <name>

IDEF <name>

Parameters
<name>

A unique name assigned to the input configuration.
Alphanumeric character sequence limited to 23 characters.

Description
IDEFINEIDEFINEIDEFINEIDEFINE begins a group of commands that define an input sampling configuration.

IDEFINE <name>
 [input configuration command] *
END

<name> is a unique name given to the input configuration. <name> must be an alphanumeric sequence with no
spaces and is limited to 23 characters or less.

The ENDENDENDEND command completes the configuration started by the IDEFINEIDEFINEIDEFINEIDEFINE command, making the configuration
available for execution.

The complete list of input configuration commands that can appear between the IDEFINEIDEFINEIDEFINEIDEFINE and the ENDENDENDEND command
is given in Chapter 5. These commands establish the number of channels, configure input gains, specify sample
time intervals, and so forth.

Older notations allow a number on the IDEFINEIDEFINEIDEFINEIDEFINE command line following the <name> field. This old notation is an
alternative to using a GROUPSGROUPSGROUPSGROUPS or CHANNELSCHANNELSCHANNELSCHANNELS command to configure the number of sampled pins or pin groups.
However, various new hardware and software features will not be available when old notations are used.

Examples

// A configuration for a DAP 5400a/627
IDEFINE INP16
 GROUPS 2
 SET IP(0..7) SPG0
 SET IP(8..15) SPG1
 TIME 5
END

Begin the definition of an input configuration named INP16 with 2 input channel groups, for a total of 16 input
channels.

244 Chapter 19 DAPL Commands: IDEFINE

// A configuration for a DAP 4000a/212
IDEFINE INP4
 CHANNELS 4
 SET IP0 SP0
 SET IP1 SP1
 SET IP2 SP0
 SET IP3 SP2
 TIME 25
END

Begin the definition of an input configuration named INP4 with 4 individual input channels sampling three distinct
signal sources.

See Also
ENDENDENDEND, SETSETSETSET, VRANGEVRANGEVRANGEVRANGE, CHANNELSCHANNELSCHANNELSCHANNELS, GROUPSGROUPSGROUPSGROUPS, ODEFINEODEFINEODEFINEODEFINE, PDEFINEPDEFINEPDEFINEPDEFINE

Chapter 19 DAPL Commands: INTERP 245

INTERP

Define a task that computes a function value using a lookup table.

INTERP (<in_pipe>, <x_vector>, <y_vector>, <out_pipe>)

Parameters
<in_pipe>

Input data pipe.
WORD PIPE | LONG PIPE | FLOAT PIPE | DOUBLE PIPE

<x_vector>
A list of monotonically increasing abscissa (input) values.
WORD VECTOR | LONG VECTOR | FLOAT VECTOR | DOUBLE VECTOR

<y_vector>
A list of corresponding ordinate (output) values.
WORD VECTOR | LONG VECTOR | FLOAT VECTOR | DOUBLE VECTOR

<out_pipe>
Output data pipe.
WORD PIPE | LONG PIPE | FLOAT PIPE | DOUBLE PIPE

Description
INTERPINTERPINTERPINTERP evaluates a function by linear interpolation on a lookup table. This command is especially useful for
sensor linearization and calibration.

<x_vector> and <y_vector> represent a set of ordered pairs of numbers (x,y) that describe a function. The
numbers of elements in <x_vector> and <y_vector> must be the same, the values in the <x_vector> must be
in a strictly ascending sequence, and the input and output data must be the same data type matching the input and
output data pipes.

For each value in <in_pipe>, an INTERPINTERPINTERPINTERP task searches for the nearest bounding values in <x_vector>,
interpolates between the corresponding values of <y_vector>, and places the result in <out_pipe>.

INTERPINTERPINTERPINTERP returns the first <y_vector> value for values from <in_pipe> that are less than the smallest value in
<x_vector>. INTERPINTERPINTERPINTERP returns the last <y_vector> value for values from <in_pipe> that are greater than the
largest value in <x_vector>.

Example

VECTOR X WORD = (-32768,0,32767)
VECTOR Y WORD = (-100,0,200)
INTERP (P1, X, Y, PINTRP)

Read data from pipe P1, interpolate an output value based on the two-piece function in the table defined by vectors
X and Y, and send the results to pipe PINTRP.

246 Chapter 19 DAPL Commands: INTERP

See Also
THERMOTHERMOTHERMOTHERMO

Chapter 19 DAPL Commands: LET 247

LET

Change the value of a variable or constant.

LET <sym_name> = <value>

Parameters
<sym_name>

Name of the variable or constant symbol whose value is being changed.
WORD CONSTANT | WORD VARIABLE |
LONG CONSTANT | LONG VARIABLE |
FLOAT CONSTANT | FLOAT VARIABLE |
DOUBLE CONSTANT | DOUBLE VARIABLE

<value>
The new value to assign to the variable or constant symbol.
WORD CONSTANT | WORD VARIABLE |
LONG CONSTANT | LONG VARIABLE |
FLOAT CONSTANT | FLOAT VARIABLE |
DOUBLE CONSTANT | DOUBLE VARIABLE

Description
LETLETLETLET changes the value of a variable or constant symbol. Floating point variables and constants cannot be used to
assign a value to a WORD or LONG symbol, but otherwise, any constant or variable is acceptable if it provides a
value in the representable range. The <sym_name> symbol name must be defined previously by a VARIABLESVARIABLESVARIABLESVARIABLES or
CONSTANTSCONSTANTSCONSTANTSCONSTANTS command.

When the LETLETLETLET command is used to change a constant symbol, no configurations can be active. A LETLETLETLET command
can change a variable symbol at any time.

Reconfiguring a constant symbol using the LETLETLETLET command must be done with care. A constant value assigned by
the LETLETLETLET command is evaluated when items using the symbol are initialized. For tasks, the evaluation occurs at task
creation, as the configuration starts. For other system elements, the evaluation occurs when the configuration is
downloaded to the DAPL system, as the commands are interpreted and executed. For example, if a downloaded
IDEFINEIDEFINEIDEFINEIDEFINE command evaluates the number of data channels from a named constant, changing the named constant
value later does not change the number of channels in the sampling configuration. An EDITEDITEDITEDIT command can be used
to change configuration parameters for sampling and update procedures.

248 Chapter 19 DAPL Commands: LET

Examples

LET SPEED=152.5

Set the value of floating point symbol SPEED to 152.5.

LET N = M
Change the value of symbol N to the current value of symbol M.

See Also
CONSTANTSCONSTANTSCONSTANTSCONSTANTS, EDITEDITEDITEDIT, SDISPLAYSDISPLAYSDISPLAYSDISPLAY, VARIABLESVARIABLESVARIABLESVARIABLES

Chapter 19 DAPL Commands: LIMIT 249

LIMIT

Define a task that detects values satisfying a specified level condition.

LIMIT (<in_pipe>, <region1>, <trigger> [,<region2>])

Parameters
<in_pipe>
WORD PIPE | LONG PIPE | FLOAT PIPE | DOUBLE PIPE

<region1>
A specification of the triggering level condition.
REGION

<trigger>
The trigger asserted when values in the specified range are found.
TRIGGER

<region2>
An optional specification for holdoff (hysteresis) to avoid spurious re-triggering.
REGION

Description
A LIMITLIMITLIMITLIMIT task scans input data for values that satisfy the condition specified by <region1>. When such a value is
found, <trigger> is asserted. For example,

INSIDE, 5000.0, 7500.0

This condition specifies reporting an event by asserting <trigger> when the level of the signal enters the region
5000 to 7500.

An optional second region, <region2>, can specify trigger hysteresis. After a <trigger> event is asserted,
subsequent data are ignored until <region2> is satisfied. Then, the scan for values that satisfy <region1>
resumes. Specifying <region2> prevents multiple triggering when a signal changes slowly or when events occur
in bursts that only need to be recognized once. <region2> often set the same as <region1>, although this is not
required. The data types of the region specifications and the input data stream must match.

The two limit values for a REGION can be variable. The location within a data stream where change to a REGION
variable takes effect is indeterminate because variable changes are not synchronized with task processing. The
variable change can appear to be shifted either forward or backward in time by an unpredictable number of sample
positions, depending on how much unprocessed data are in each task’s data buffers.

250 Chapter 19 DAPL Commands: LIMIT

Examples

LIMIT (IPIPE4, INSIDE,5500,5600, T1, INSIDE,5500,5600)

Read data from input channel pipe 4 and scan for values from 5500 to 5600; asserting trigger T1 whenever one is
found. After an assertion, do not trigger again until after a value not in the range 5500 to 5600 is detected.

LIMIT (P1, OUTSIDE,-20000,20000, T2, OUTSIDE,-10000,10000)
Scan data in pipe P1 for levels less than -20000 or greater than 20000, and assert trigger T2 when one of those
values is found. After an assertion, T2 will not trigger again while data from P1 remain outside the range -10000 to
10000.

See Also
DLIMITDLIMITDLIMITDLIMIT, LOGICLOGICLOGICLOGIC

Chapter 19 DAPL Commands: LOADING 251

LOADING

Define a task to simulate data flow and CPU loading for latency studies.

LOADING (<in_pipe>, <blockin>, <avgCPU>, <devCPU>, <out_pipe>, <blockout>)

Parameters
<in_pipe>

Input data stream to process.
WORD PIPE | LONG PIPE | FLOAT PIPE | DOUBLE PIPE

<blockin>
Size of input data blocks to process.
WORD CONSTANT

<avgCPU>
The average CPU consumption in microseconds for each input block received.
WORD CONSTANT | LONG CONSTANT

<devCPU>
The range of deviation, plus or minus microseconds, in CPU consumption.
WORD CONSTANT

<out_pipe>
Output data stream.
WORD PIPE | LONG PIPE | FLOAT PIPE | DOUBLE PIPE

<blockout>
Size of output data blocks to produce.
WORD CONSTANT

Description
The LOADINGLOADINGLOADINGLOADING command provides a means of simulating CPU consumption and data flow in a DAPL configuration
before the actual processing has been developed. Values are taken from the <in_pipe> in multiples of
<blockin> specified. For many systems the <blockin> size is 1 because values arrive singly, but some systems
will read a bank of sensor or feedback signals to process together in one operation. After processing, results are
placed into the <out_pipe> in groups of size <blockout> .

The contents of the data streams are numerically valid but meaningless to the simulation. The purpose of this
command is not to produce useful calculated results; rather it is to provide a means for determining how the DAPL
system acts under load given the amounts of data, block sizes and sampling rates specified. Control systems using
sampled data expect delays of one sampling interval, and ordinarily complete all computations in time for the next
sample to arrive. Latency longer than one sampling interval can mean data backlogs. Missed deadlines can be a
serious difficulty for some time-critical systems. With some pessimistic assumptions about process timing, a
simulation can determine whether response latency is likely to be a problem, unlikely to be a problem, or
completely guaranteed to never be a problem.

The computation is not relevant, and only the time delays are important to the simulation. Time delays and
variations are specified in units of microseconds, with the <avgCPU> parameter specifying the average computing

252 Chapter 19 DAPL Commands: LOADING

time and the <devCPU> parameter specifying the largest random deviations. The <avgCPU> value must be
positive, and the <devCPU> value must be less than <avgCPU>. The distribution of computing time is triangular,
so there will be many values clustered close to the <avgCPU> level but very few that are near the limits at
<devCPU> microseconds above or below the average level.

See the STATISTICSSTATISTICSSTATISTICSSTATISTICS command for information about analyzing the delays in the processing network.

Example

LOADING (P1,10, 1000,30, P2,1)
LOADING (P2,1, 50,20, P3,1)

Simulate the timing of a cascade of two processing commands. The first command takes data blocks of 10 samples
from source pipe P1, uses 970 microseconds to 1030 microseconds of processing time for each block, and places
single output results into destination pipe P2. The second command receives each value from the first command,
takes from 30 to 70 microseconds to compute a new value, and places it into destination pipe P3. Run a processing
configuration with this sequence to see if the propagation delays can satisfy timing requirements.

See Also
STATISTICSSTATISTICSSTATISTICSSTATISTICS

Chapter 19 DAPL Commands: LOGIC 253

LOGIC

Define a task that asserts a trigger when data bits match a specified pattern.

LOGIC (<in_pipe>, <xor>, <and>, <trigger>)

Parameters
<in_pipe>

The pipe from which bit patterns are taken and tested.
WORD PIPE | LONG PIPE

<xor>
A bit pattern number identifying bit positions that are active-low.
WORD CONSTANT | WORD VARIABLE | LONG CONSTANT | LONG VARIABLE

<and>
A bit pattern number selecting bit positions to test.
WORD CONSTANT | WORD VARIABLE | LONG CONSTANT | LONG VARIABLE

<trigger>
The trigger that is asserted when bits match the specified conditions.
TRIGGER

Description
LOLOLOLOGICGICGICGIC asserts a trigger when selected bits from <in_pipe> match conditions specified by the <xor> and the
<and> parameters. The values in <in_pipe> can be obtained by sampling the digital input port, and can be used
to detect external alarm events. There is a built-in hysteresis behavior, and LOGICLOGICLOGICLOGIC asserts <trigger> only once
each time the conditions are satisfied.

To check triggering conditions, a LOGICLOGICLOGICLOGIC task computes a Boolean expression for each input value by:

• inverting each bit whose corresponding <xor> bit is 1,
• masking to 0 each bit whose corresponding <and> bit is 0,
• setting the Boolean value to 1 if the result is equal to the <and> parameter,
• setting the Boolean value to 0 otherwise.

Usually, it is easiest to specify the bit tests using a hexadecimal notation. If more than one bit is tested, LOGICLOGICLOGICLOGIC
requires all the selected bits to satisfy the triggering condition. If the Boolean result is 1, <trigger> is asserted.
After that, the LOGICLOGICLOGICLOGIC task must receive an input value for which the computed Boolean is 0 before it will trigger
again.

If you need more complicated bit detection logic, use a DAPL expression before applying this command.

Note: The behavior of this command is very similar to edge-triggered operation, but not exactly the same. Edge-
triggering uses one sample of past history, but this command does not. For true edge-triggered operation, use the
command with a TRIGGERTRIGGERTRIGGERTRIGGER operating mode having a nonzero STARTUP property.

254 Chapter 19 DAPL Commands: LOGIC

Examples

LOGIC (IPIPE3, $0004, $0004, 0, T1)

Assert trigger T1 when bit 2 of a bit pattern from input channel pipe 3 is 0.

TRIGGER T2 MODE=NORMAL STARTUP=1
LOGIC (IPIPE3, 0, $5555, 0, T2)

Assert trigger T2 when all data bits in odd-numbered positions are 1, and this condition was not true for the
previous sample.

See Also
DLIMITDLIMITDLIMITDLIMIT, LIMITLIMITLIMITLIMIT, TRIGGERSTRIGGERSTRIGGERSTRIGGERS

Chapter 19 DAPL Commands: LOW 255

LOW

Define a task that scans blocks of data for minimum values.

LOW (<in_pipe>, <count>, <out_pipe1> [, <out_pipe2>])

Parameters
<in_pipe>

Input data pipe.
WORD PIPE | LONG PIPE | FLOAT PIPE | DOUBLE PIPE

<count>
A value that specifies the size of blocks to be scanned.
WORD CONSTANT | LONG CONSTANT

<out_pipe1>
Output data pipe for the maximum value from each block.
WORD PIPE | LONG PIPE | FLOAT PIPE | DOUBLE PIPE

<out_pipe2>
If specified, the pipe into which the index of the maximum value is placed.
WORD PIPE | LONG PIPE

Description
LOWLOWLOWLOW scans blocks of size <count> for minimum values. The minimum of each block is placed in the pipe
<out_pipe1>. If pipe <out_pipe2> is specified, the sample number of each minimum value is placed in
<out_pipe2>. The sample number has a value between 0 and <count>-1.

When there are multiple values equal to the same minimum, the location of the first minimum is reported.

LOWLOWLOWLOW scans blocks of size <count> samples for minimum values. The minimum of each block is placed in the
pipe<out_pipe1>. If pipe<out_pipe2> is specified, indices describing the location of each minimum value are
placed in <out_pipe2>. The index numbers range from 0 to <count>-1.

When there are multiple values equal to the same minimum, the location of the first maximum is reported.

Note: The LOWLOWLOWLOW command is the same as HIHIHIHIGHGHGHGH except for seeking the lowest (most negative) instead of the highest
(most postive) value.

256 Chapter 19 DAPL Commands: LOW

Examples

LOW (IPIPE3, 100, PLOW)

Read blocks of 100 values from input channel pipe 3 and send the minimum value of each block to pipe PLOW.

LOW (P2, 1000, P3, PIX)
Read blocks of 1000 values from pipe P2. Send the minimum value from each block to pipe P3, and send the
position index of the minimum in each block to pipe PIX.

See Also
FINDMAXFINDMAXFINDMAXFINDMAX, HIGHHIGHHIGHHIGH, RANGERANGERANGERANGE

Chapter 19 DAPL Commands: MASTER 257

MASTER

Configure an input or output configuration’s sampling clock as a master clock.

MASTER [DIVIDE = <n>]

Parameters
<n>

Integer divisor for clock rate

Description
The MASTERMASTERMASTERMASTER command is used in systems with multiple Data Acquisition Processors. It configures the designated
Data Acquisition Processor to serve as a master that generates clocking or updating timing signals to synchronize
all slave Data Acquisition Processors.

To make the DAP act as a master for sampling activity on all slave Data Acquisition Processors, include the
MASTERMASTERMASTERMASTER command in the input sampling configuration. To make the DAP act as a master for output updating
activity on all slave Data Acquisition Processors, include the MASTERMASTERMASTERMASTER command in the output updating
configuration.

When using a very fast Data Acquisition Processor as the MASTER for input sampling, the rates may be faster than
some slower DAP models can operate. If you specify the optional DIVIDE=<n> parameter, a clock divider
reduction will be applied to the sampling or updating signal to reduce the rate. The value of <n> must be 1, 2, 3 or
4. The default value is 1. The default will work with all DAP models, but other values are not supported by all
models. Check your DAP hardware manual before using this feature.

See Also
CLOCK for inputCLOCK for inputCLOCK for inputCLOCK for input, CLOCK for outputCLOCK for outputCLOCK for outputCLOCK for output, SLAVESLAVESLAVESLAVE, , , , IDEFINEIDEFINEIDEFINEIDEFINE, , , , ODEFINEODEFINEODEFINEODEFINE

258 Chapter 19 DAPL Commands: MERGE

MERGE

Define a task that merges data sequentially from multiple input pipes.

MERGE (<in_pipe_0>, ... , <in_pipe_n-1>, <out_pipe>)

Parameters
<in_pipe_0> ... <in_pipe_n-1>

Input data pipes.
WORD PIPE | LONG PIPE | FLOAT PIPE | DOUBLE PIPE

<out_pipe>
Output pipe for merged data.
WORD PIPE | LONG PIPE | FLOAT PIPE | DOUBLE PIPE

Description
MERGEMERGEMERGEMERGE reads data from one or more input pipes and places the data consecutively into an output pipe.

Data arrival rates in all pipes <in_pipe_0> through <in_pipe_n-1> must be equal. If different volumes of data
arrive in different pipes, data will backlog in the pipes having higher volumes, causing processing to stall when a
pipe has no capacity to accept more data.

MERGEMERGEMERGEMERGE is useful for merging binary data from several pipes to a single communication pipe for transmission to the
host computer. MERGEMERGEMERGEMERGE is the inverse of SEPARATESEPARATESEPARATESEPARATE.

When there is a mix of input and output data types, the MERGEMERGEMERGEMERGE command applies a mix of strategies for converting
input data to fit into the output pipe. Conversion operations can be slow, so it is best to avoid mixed data types.
When data types must be mixed, refer to the following chart to determine how the data representations are altered.
Depending on the type of input and output pipes, the data are handled in one of five ways:

1. Copy – If the pipes are the same type, MERGEMERGEMERGEMERGE copies the data directly from <in_pipe> to <out_pipe>
with no changes and no inconsistencies.

2. Alias – This is a kind of copy that preserves the bit representation when values have equal size, but leaves
the bit representation inconsistent with the natural data type of the destination pipe. The values are not
directly meaningful if interpreted as the data type of the destination pipe. To recover the data, the
SEPARATESEPARATESEPARATESEPARATE command can be used; or the data can be transferred to the PC host where a software
application reintereprets the bits within buffer storage as the original data type.

3. Convert – A value-preserving type conversion operation can be applied when the <out_pipe> data type
can represent all possible values allowed by <in_pipe> with no loss of resolution, range or accuracy. The
new representation placed into <out_pipe> is consistent with the type of that pipe. Conversions from
WORD to LONG type are done by sign extension, so this conversion is easily reversed by ignoring the 16
extension bits.

4. Split – Consistent with previous versions of DAPL, data elements that are too long to fit into shorter data
elements of the destination pipe are split. The shorter fragments are then sent to the destination pipe. This

Chapter 19 DAPL Commands: MERGE 259

can be done only when the destination pipe is a fixed point type, because bit patterns in the fragments will
not always correspond to valid floating point values. The least significant parts of the bit representations are
sent first. To recover split data, the SEPARATESEPARATESEPARATESEPARATE command can be used; or the data can be transferred to the
PC host where the parts must be arranged in storage so that the software can properly interpret bit
representations as the original type.

5. Not Allowed – If none of the above options can transfer the information as valid elements of the output
pipe data type, without loss of accuracy, range or resolution, that combination of input and output types is
not allowed. An error will be diagnosed and the command will terminate.

 The following table shows which operations are applied for each combination of <in_pipe> and <out_pipe>
data types.

 Conversion Table

<in_pipe> <out_pipe>

 WORD LONG FLOAT DOUBLE

WORD copy convert convert convert

LONG split copy not allowed convert

FLOAT split alias copy convert

DOUBLE split split not allowed copy

Examples

MERGE (P1,P2,P3,P4)

Read data from pipes P1, P2, and P3 of various data types, and place the data consecutively into pipe P4.

MERGE (P5,P6,P7,$BinOut)
Transfer data from pipes P5, P6, and P7 to the binary output communication pipe; this puts data data streams into
a multiplexed sequence and transfers them to the host computer.

See Also
BMERGEBMERGEBMERGEBMERGE, BMERGEFBMERGEFBMERGEFBMERGEF, MERGEFMERGEFMERGEFMERGEF, SEPARATSEPARATSEPARATSEPARATEEEE, SEPARATEFSEPARATEFSEPARATEFSEPARATEF

260 Chapter 19 DAPL Commands: MERGEF

MERGEF

Define a task that merges data from several pipes in arbitrary sequence.

MERGEF (<in_pipe_0>, ... , <in_pipe_n-1>, <out_pipe>)

Parameters
<in_pipe_0>, ... , <in_pipe_n-1>

Data pipes providing input data.
WORD PIPE | LONG PIPE | FLOAT PIPE | DOUBLE PIPE

<out_pipe>
Output pipe for merged data.
WORD PIPE | LONG PIPE | FLOAT PIPE | DOUBLE PIPE

Description
MERGEFMERGEFMERGEFMERGEF merges data from several pipes <in_pipe_0> through <in_pipe_n-1> into a single pipe
<out_pipe>. An identifying flag is included with each value, specifying which pipe provided the value. MERGEFMERGEFMERGEFMERGEF
differs from MERGEMERGEMERGEMERGE in that data values are not read sequentially from the input pipes. Therefore, the data rates from
different input pipes need not match, and the order that data is placed into <out_pipe> is not predictable.
Application must sort through the data tags to reconstruct the original signals.

Each time a value is read from a pipe, two values are placed in <out_pipe>. The first value is a flag identifying
the pipe from which the value was read. The identifying flag is a number from 0 to n-1, in the natural data type of
<out_pipe>. The flag value indicates the source. The flag is followed by the value.

If the data types of an input pipe and and output pipe do not match, the value is subject to the same conversion
rules described for the MERGEMERGEMERGEMERGE command. For most efficient operation, avoid mixing data types.

MERGEFMERGEFMERGEFMERGEF is particularly useful for transmitting binary data to the PC when data values arrive sporadically and at
different rates from different data sources.

MERGEFMERGEFMERGEFMERGEF is the inverse of SSSSEPARATEFEPARATEFEPARATEFEPARATEF.

See Also
BMERGEBMERGEBMERGEBMERGE, BMERGEFBMERGEFBMERGEFBMERGEF, MERGEMERGEMERGEMERGE, SEPARATESEPARATESEPARATESEPARATE, SEPARATEFSEPARATEFSEPARATEFSEPARATEF

Chapter 19 DAPL Commands: NMERGE 261

NMERGE

Define a task that merges data in groups.

NMERGE (<n_0>, <in_pipe0>, [<n_1>, <in_pipe1>, ...] <out_pipe>)

Parameters
<n_0>, …, <n_n-1>

Number of data values to transfer from input pipes.
WORD CONSTANT | LONG CONSTANT

<in_pipe_0>, …, <in_pipe_n-1
Input data pipes.
WORD PIPE | LONG PIPE | FLOAT PIPE | DOUBLE PIPE

<out_pipe>
Output pipe for merged data.
WORD PIPE | LONG PIPE | FLOAT PIPE | DOUBLE PIPE

Description
NMERGENMERGENMERGENMERGE reads data from one or more input pipes and places the data into an output pipe. The data are transferred
in groups, but unlike the BMERGEBMERGEBMERGEBMERGE, the source data pipes <in_pipe_0> through <in_pipe_n-1> are not restricted
to being the same block size or the same data type. NMERGENMERGENMERGENMERGE transfers <n_0> data values from <in_pipe_0> to
<out_pipe>, then transfers <n_1> data values from <in_pipe_1> to <out_pipe>, and so forth, in the manner
of the MERGEMERGEMERGEMERGE command. The difference is that it takes data from each source in groups rather than one value at a
time.

When the input and output pipes do not match for making a transfer, the data conversion rules of the MERGEMERGEMERGEMERGE
command are applied. Conversions have a high computational cost, so for best efficiency avoid mixing data types.

NMERGENMERGENMERGENMERGE is useful for merging binary data from several pipes when the data rates in pipes are consistent but not
identical, for transfer through a single communication pipe to the host computer. For instance, a single trigger time
stamp value (LONG data type) can be merged with the values that were selected from a data stream by the WAITWAITWAITWAIT
command.

Example

NMERGE (1, P1, 1000, P2, $BinOut)

Transfer one data value from pipe P1 followed by 1000 data values from pipe P2 to the host computer through
$BinOut.

See Also
BMERGEBMERGEBMERGEBMERGE, BMERGEFBMERGEFBMERGEFBMERGEF, MERGEMERGEMERGEMERGE, MERGEFMERGEFMERGEFMERGEF, SEPARATESEPARATESEPARATESEPARATE, SEPARATEFSEPARATEFSEPARATEFSEPARATEF

262 Chapter 19 DAPL Commands: NTH

NTH

Define a task that retains one out of every N trigger events.

NTH (<trigger1>, <n>, <trigger2>)

Parameters
<trigger1>

The trigger containing the original event sequence.
TRIGGER

<n>
Number of trigger assertions.
WORD CONSTANT | LONG CONSTANT

<trigger2>
The trigger containing the modified event sequence.
TRIGGER

Description
NTHNTHNTHNTH reads from <trigger1> and passes the last of every <n> trigger assertions to <trigger2>, discarding the
first <n-1> triggers. <n> must be a positive, nonzero integer.

Example

NTH (T1, 100, T2)

Pass every hundredth trigger event from trigger T1 to T2, discarding the rest.

See Also
WAITWAITWAITWAIT

Chapter 19 DAPL Commands: ODEFINE 263

ODEFINE

Begin an output updating configuration.

ODEFINE <name>

ODEF <name>

Parameters
<name>

Assigned output configuration name.
Alphanumeric string limited to 23 characters.

Description
ODEFINEODEFINEODEFINEODEFINE begins a group of commands that define an output updating configuration.

ODEFINE <name>
 [output configuration command] *
END

The complete list of output configuration commands is given in Chapter 5. The command lines represented by the
bracket notation configure output channel pipes, specify update intervals, etc.

An output configuration configures the Data Acquisition Processor for isochronous (clocked) output updates. Use
DACOUTDACOUTDACOUTDACOUT or DIGITALOUTDIGITALOUTDIGITALOUTDIGITALOUT for unclocked output updates with lower latency.

The ENDENDENDEND command completes the configuration started by the ODEFINEODEFINEODEFINEODEFINE command, making the configuration
available for execution.

<name> is a unique name given to the output configuration. <name> must be an alphanumeric string with no
spaces and is limited to 23 characters.

Example

ODEFINE OUTPR
 CHANNELS 2
 SET OP0 A0
 SET OP1 A1
 TIME 1000
END

Begin the definition of an output configuration named OUTPR with 2 analog output channels in the output channel
pipe.

See Also
ENDENDENDEND, IDEFINEIDEFINEIDEFINEIDEFINE, PDEFINEPDEFINEPDEFINEPDEFINE

264 Chapter 19 DAPL Commands: OPTIONS

OPTIONS

Set various system options.

OPTIONS <name>=<value> [, <name>=<value>]*

OPTION <name>=<value> [, <name>=<value>]*

OPT <name>=<value> [, <name>=<value>]*

O <name>=<value> [, <name>=<value>]*

Parameters
<name>

Option name.

<value>
New system option.

Description

OPTIONSOPTIONSOPTIONSOPTIONS sets various system options. The system option names are:

AINEXPANDAINEXPANDAINEXPANDAINEXPAND Set analog input expansion mode.
BPOUTPUTBPOUTPUTBPOUTPUTBPOUTPUT Set bipolar output.
BUFFERINGBUFFERINGBUFFERINGBUFFERING Set buffering mode.
DECIMALDECIMALDECIMALDECIMAL Set input/output format.
ERRORQERRORQERRORQERRORQ Hold error messages.
EVENTLOGSIZEEVENTLOGSIZEEVENTLOGSIZEEVENTLOGSIZE Set the number of available entries in the event

log.
FLOATERRORFLOATERRORFLOATERRORFLOATERROR Set floating point error mode.
OVERFLOWQOVERFLOWQOVERFLOWQOVERFLOWQ Hold overflow messages.
PROMPTPROMPTPROMPTPROMPT Control the system prompt character.
QUANTUMQUANTUMQUANTUMQUANTUM Set global time slice quantum.
RESCUERESCUERESCUERESCUE Activate a priority override “rescue” process
RESETRESETRESETRESET Reset options to power-up default.
RESTORERESTORERESTORERESTORE Restore the options from the options stack.
RINTERVALRINTERVALRINTERVALRINTERVAL Time interval separating rescue task quanta
RQURQURQURQUANTUMANTUMANTUMANTUM Time interval in which rescue task can operate
SAVESAVESAVESAVE Push the current options onto a stack.
SYSINECHOSYSINECHOSYSINECHOSYSINECHO Set echo mode for input.
TERMINALTERMINALTERMINALTERMINAL Select input response for interactive programs.
UNDERFLOWQUNDERFLOWQUNDERFLOWQUNDERFLOWQ Hold underflow messages.

Most <names> are set/reset options; they can be assigned ON/OFF or YES/NO values.

Chapter 19 DAPL Commands: OPTIONS 265

AINEXPAND = ON|OFF
 The connector pinout on some Analog Input Expansion Boards is different than the Data Acquisition Processor

connector pinout. Only older 64-channel input expansion boards use AINEXPAND; check the “Features of DAPL
dependent on DAP model” document for product numbers. When AINEXPAND is on, DAPL remaps input pins on
an expansion board to match the pinout of the Data Acquisition Processor analog connector. When AINEXPAND
is off, DAPL does not remap input pins. AINEXPAND defaults to off. See the Analog Input Expansion Board
documentation for more details of input pin mapping using AINEXPAND.

BPOUTPUT = ON|OFF
 If BPOUTPUT is on, numbers sent to the digital-to-analog converters are interpreted as bipolar voltages. If
BPOUTPUT is off, numbers sent to the digital-to-analog converters are interpreted as unipolar voltages. This
option defaults to on; if the output range of the digital-to-analog converters is changed to unipolar, this option
must be changed to off. See Chapter 8 for more information about how to use integers with unipolar outputs. See
the connector chapters for more information about output range configuration.

 BPOUTPUT is an abbreviation for BiPolar OUTPUT.

BUFFERING = OFF|MEDIUM|LARGE
 The BUFFERING option helps tasks to optimize their data buffering configuration. Three modes are available,
OFF, MEDIUM, and LARGE. MEDIUM is the default mode. In this mode, tasks use moderate size memory buffers
suitable for most operations. The mode LARGE improves processing efficiency by providing tasks with larger
memory buffers. The mode OFF disables buffering, and tasks use small buffers or single values for lowest
latency. This option is advisory only– processing command implementations might not respond to it.

DECIMAL = ON|OFF
 When DECIMAL is OFF, some system commands will display numbers using a hexadecimal format. When
DECIMAL is ON, all number displays use a decimal number format. The default is ON. The command interpreter
and the formatting of data for run-time input and output are not affected by this option.

ERRORQ = ON|OFF
 When ERRORQ=ON, DAPL suppresses all warning and error messages. This option allows a program in the host

PC to process data at high speed without allowing for error messages. The default is on.

 The commands DISPLAY ENUMDISPLAY ENUMDISPLAY ENUMDISPLAY ENUM or DISPLAY EMSGDISPLAY EMSGDISPLAY EMSGDISPLAY EMSG can be used at any time to determine whether any errors

have been suppressed because of the ERRORQ option. The Data Acquisition Processor retains the first error
message which is suppressed after ERRORQ is set to on; setting ERRORQ to off after an error has occurred causes
the Data Acquisition Processor to print this error message. The error message is printed only if the error has not
already been displayed using DISPLAY ENUM or DISPLAY EMSG.

 OVERFLOWQ, UNDERFLOWQ, and ERRORQ are useful when the output of the Data Acquisition Processor is being

manipulated by a host computer program. By turning these flags on, the program can prevent error messages
from interrupting the Data Acquisition Processor output. Errors then can be checked under controlled conditions
using the DISPLAYDISPLAYDISPLAYDISPLAY command.

EVENTLOGSIZE = <n>
 The EVENTLOGSIZE option specifies the number of entries to reserve in the DAPL system event log for error

and warning message. If the number of event messages exceeds this number, old values are removed to make
room for new messages.

FLOATERROR = ON|OFF

266 Chapter 19 DAPL Commands: OPTIONS

 The FLOATERROR parameter takes a Boolean value ON or OFF. The default is OFF. Setting FLOATERROR=ON
allows the hardware floating point unit or emulator software to force an interrupt, generating a diagnostic
message and terminating the task when various floating point errors occur. This feature is most useful during
custom command development and testing. Most finished applications should select the OFF setting. The OFF
setting attempts to provide a fix and continue processing after a floating point error occurs.

OVERFLOWQ = ON|OFF
 OVERFLOWQ controls whether sampling overflow messages are reported immediately or queued. If OVERFLOWQ is

true, overflow messages are queued and can be viewed with the command DISPLAY OVERFLOWQDISPLAY OVERFLOWQDISPLAY OVERFLOWQDISPLAY OVERFLOWQ. See
Chapter 14 for more information. The default is on.

 OVERFLOWQ, UNDERFLOWQ, and ERRORQ are useful when the output of the Data Acquisition Processor is being

manipulated by a host computer program. By turning these flags on, the program can prevent error messages
from interrupting the Data Acquisition Processor output. Errors then can be checked under controlled conditions
using the DISPLAYDISPLAYDISPLAYDISPLAY command.

PROMPT = ON|OFF
 If PROMPT is on, the DAPL command interpreter operating with option SYSINECHO=ON prints a prompt

character at the beginning of any line on which DAPL is requesting input. Since the prompt character changes
when DAPL enters different modes, this character provides an easy way to determine the type of input expected.
If prompt is OFF, no prompt character is printed. Setting PROMPT=OFF is convenient when DAPL output is being
processed by a computer program other than DAPview for Windows. The default is OFF.

QUANTUM = <n>
 The QUANTUM option sets DAPL’s global time slice quantum to a given value. A valid time quantum value

ranges from 100 to 5000 (µs), board dependent. The default time quantum is 2000 µs. A smaller time quantum
forces the CPU to switch among tasks more often. More frequent task scheduling reduces the task switching
latency at the expense of decreased system efficiency. On the other hand, a larger time quantum improves
efficiency by reducing task switching overhead but at the cost of higher latency. See Chapter 15 for more
information.

RESCUE = ON|OFF
 Turning on this option establishes a high-priority system task with no processing obligations of its own. This

task allows ordinary processing tasks to make gradual progress, despite priority problems that would ordinarily
prevent any activity. This slow progress is usually enough to identify the tasks that can run correctly and the
tasks that are producing the deadlock problem. The costs of using the rescue task are so small that most
configurations can leave the default ON without difficulty. Highly optimized configurations with rigid scheduling
requirements can turn this option OFF.

RESET
 Resets the options and options stack back to power-up defaults, as they would be immediately after a power-up

start of the system. Specialized software applications can use this to good effect to establish a known state in one
operation. Otherwise, use this with extreme caution, particularly in an interactive software environment such as
DAPstudio, because it can produce major unexpected side effects such as silencing interactive command
displays.

RESTORE
 Restores the most recent options stored on the options stack. See the description of SAVE below. RESTORE does

not take a <value>.

Chapter 19 DAPL Commands: OPTIONS 267

RINTERVAL = <n>
 Specifies the time interval in microseconds between scheduled activations of rescue task processing.

RQUANTUM = <n>
 Specifies the time interval duration in microseconds during which processing under control of the rescue task

takes place.

SAVE
 Pushes the current options onto a stack. The options stack is five levels deep. An OPTIONS SAVE command

beyond five stack entries will cause the oldest entry on the stack to be lost. SAVE does not take a <value>.

SYSINECHO = ON|OFF
 The SYSINECHO option controls the echoing of characters read from the default text input pipe, $SysIn. The

option SYSINECHO=ON is most useful for interactive programs such as DAPview for Windows. The default is
OFF.

TERMINAL = ON|OFF
 The TERMINAL option determines the Data Acquisition Processor response when it receives text input while it is

sending text output. When TERMINAL is on and the Data Acquisition Processor receives any character, the output
of any active FORMATFORMATFORMATFORMAT tasks is suspended until an entire line, ending with a carriage return, is received. The
TERMINAL option should be on if the Data Acquisition Processor is communicating with an interactive program
such as the Interpreter display window of DAPstudio. The default is off.

UNDERFLOWQ = ON|OFF
 UNDERFLOWQ controls whether output configuration underflow messages are reported immediately or queued. If
UNDERFLOWQ is true, underflow messages are queued and can be viewed with the command
DISPLAY UNDERFLOWQDISPLAY UNDERFLOWQDISPLAY UNDERFLOWQDISPLAY UNDERFLOWQ. See Chapter 14 for more information. The default is ON.

 OVERFLOWQ, UNDERFLOWQ, and ERRORQ are useful when the output of the Data Acquisition Processor is being

manipulated by a host computer program. By turning these flags ON, the program can prevent error messages
from interrupting the Data Acquisition Processor output. Errors then can be checked under controlled conditions
using the DISPLAYDISPLAYDISPLAYDISPLAY command.

Note: When DAPview for Windows starts up, it changes some options to provide interactive features such as
command echoing and automatic error display.

268 Chapter 19 DAPL Commands: OPTIONS

Examples

OPTIONS DECIMAL=OFF

Set all input and output in hexadecimal format.

OPTIONS PROMPT=ON,SYSINECHO=ON,TERMINAL=ON,\
ERRORQ=OFF,OVERFLOWQ=OFF,UNDERFLOWQ=OFF

Set the Data Acquisition Processor in an interactive mode.

OPTIONS BPOUTPUT=OFF
Tell the DAPL interpreter that the DACs are configured to generate unipolar voltages.

OPTIONS QUANTUM=500
Set the time slice quantum to 500 µs.

OPTIONS SAVE
Save current options.

See Also
DEDEDEDEXPANDXPANDXPANDXPAND, DISPLAYDISPLAYDISPLAYDISPLAY, OUTPORTOUTPORTOUTPORTOUTPORT, SDISPLAYSDISPLAYSDISPLAYSDISPLAY

Chapter 19 DAPL Commands: OUTPORT 269

OUTPORT

Inform DAPL of the types and addresses of output expansion boards in a system.

OUTPORT <x>[..<y>] TYPE=<z> [BPOUTPUT = <bpswitch>]

OUTPORTS <x>[..<y>] TYPE=<z> [BPOUTPUT = <bpswitch>]

Parameters
<x>

A value that specifies the output port number.
WORD CONSTANT

<y>
An optional output port number range.
WORD CONSTANT

<z>
A value that specifies the output port type.
WORD CONSTANT

<bpswitch>
A keyword specifying an analog output mode, ON for bipolar output, OFF for
unipolar output.
WORD CONSTANT

Description
OUTPORTOUTPORTOUTPORTOUTPORT informs DAPL of the types of output expansion boards in a system and their output port addresses. <x>
and <y> are integers between 0 and 63. <z> is 0 or 1.

<x> is an output port number. It optionally is followed by ..<y> to define an output port number range. The range
must be a multiple of four and start from a boundary that is a multiple of 4. For example, 0..3 and 8..15 are valid
address ranges, while 0..4 and 7..15 are not.

<z> is the output port type. Type 0 is for digital output expansion boards. Type 1 is for analog output expansion
boards. For analog output expansion boards the optional parameter BPOUTPUT=<bpswitch> selects bipolar or
unipolar range. Setting <bpswitch> value OFF selects unipolar operation. Setting <bpswitch> value ON selects
bipolar operation. The default is ON.

The following table summarizes the output behavior of the analog signal for each mode of operation. The value of
Vmax is typically +5V or +10V and is dependent on the hardware configuration. See your hardware
documentation for more information about voltage ranges.

 BPOUTPUT mode

Number Range ON OFF

-32768 to 0 -Vmax to 0 0

0 to +32767 0 to Vmax 0 to Vmax

270 Chapter 19 DAPL Commands: OUTPORT

Example

OUTPORT 0..3 TYPE=1

Set output port address 0-3 to analog output expansion.

See Also
DISPLAYDISPLAYDISPLAYDISPLAY, OPTIONSOPTIONSOPTIONSOPTIONS, DEXPANDDEXPANDDEXPANDDEXPAND, DIGITALOUTDIGITALOUTDIGITALOUTDIGITALOUT, DACOUTDACOUTDACOUTDACOUT

Chapter 19 DAPL Commands: OUTPUTWAIT 271

OUTPUTWAIT

Delay output updating until sufficient data are present in output channel pipes.

OUTPUTWAIT <preload>

Parameters
<preload>

Number of samples that must be available before updating starts.
WORD CONSTANT | LONG CONSTANT

Description
The OUTPUTWAITOUTPUTWAITOUTPUTWAITOUTPUTWAIT command causes an output-updating configuration to wait until <preload> samples have
arrived from a data supplier before beginning to deliver output updates. The scheduling of tasks is unpredictable,
and particularly so when a system configuration first starts to run. A delay in starting the output updates allows
collecting enough data in memory to sustain operation despite temporary delays. Running out of data would cause
the hardware processes to terminate prematurely with an underflow condition.

The value of <preload> must not be zero and must be a multiple of the number of output channel pipes. After
this number of samples (or more) is received into the output channel pipe, the OUTPUTWAITOUTPUTWAITOUTPUTWAITOUTPUTWAIT condition is satisfied,
and the output updating task is scheduled for execution at high priority.

When the HTRIGGERHTRIGGERHTRIGGERHTRIGGER command specifies an external hardware triggering mode other than OFF, the OUTOUTOUTOUTPUTWAITPUTWAITPUTWAITPUTWAIT
condition must be satisfied first before the output updating will respond to the external trigger signal level.

If a CYCLECYCLECYCLECYCLE command is present in the output-updating configuration, it overrides the OUTPUTWAITOUTPUTWAITOUTPUTWAITOUTPUTWAIT specification.
Satisfying the CYCLECYCLECYCLECYCLE command is equivalent to having an unlimited number of values available in memory.

For multiple-DAP systems generating output signals in a master-slave configuration, the OUTPUTWAITOUTPUTWAITOUTPUTWAITOUTPUTWAIT value for
each slave board must be satisfied before it can respond to the output clocking signals from the master board.
Conflicts would occur at initial startup or at the beginning of output bursts. In some rare cases, you might need to
increase the OUTPUTWAITOUTPUTWAITOUTPUTWAITOUTPUTWAIT value on the master board, to give the slave boards sufficient time to generate enough
data.

If you do not specify an OUTPUTWAITOUTPUTWAITOUTPUTWAITOUTPUTWAIT value, the DAPL system computes a default number equivalent to 100
milliseconds (1/10 second) of output updates. Most applications should use the default OUTPUTWAITOUTPUTWAITOUTPUTWAITOUTPUTWAIT value.

Warning: Setting <preload> less than its default value may result in output underflow and premature shutdown.

Example

OUTPUTWAIT 1000

Wait for 1000 values to arrive in the output channel pipe before starting to update the outputs.

See Also
COUNT for outputCOUNT for outputCOUNT for outputCOUNT for output, CYCLECYCLECYCLECYCLE, UPDATEUPDATEUPDATEUPDATE,,,, HTRIHTRIHTRIHTRIGGER for outputGGER for outputGGER for outputGGER for output

272 Chapter 19 DAPL Commands: PAUSE

PAUSE

Cause DAPL command processing to pause for a specified number of milliseconds.

PAUSE <milliseconds>

PA <milliseconds>

Parameters
<milliseconds>

Time in milliseconds that DAPL pauses.
WORD CONSTANT | LONG CONSTANT

Description
PAUSEPAUSEPAUSEPAUSE causes the DAPL command interpreter to pause for a specified number of milliseconds.

This command can be used when scheduling a sequence of operations, to allow time for each test in the sequence
to finish.

Note: The timing accuracy of PAUSEPAUSEPAUSEPAUSE depends on the timing accuracy of the Data Acquisition Processor real-time
clock. The real-time clock of the Data Acquisition Processor is derived from the CPU crystal clock and provides
good long-term accuracy.

Example

PAUSE 1000

Pause DAPL for 1 second before accepting new commands.

Chapter 19 DAPL Commands: PCASSERT 273

PCASSERT

Define a task that asserts a trigger based on asynchronous input.

PCASSERT (<signal>, <trigger> [,<ref_rate>])

Parameters
<signal>

A source of data indicating a triggering event.
WORD VARIABLE | LONG VARIABLE | WORD PIPE | LONG PIPE

<trigger>
The trigger to assert when an event is requested.
TRIGGER

<ref_rate>
An optional data rate control.
WORD CONSTANT |
WORD PIPE | LONG PIPE | FLOAT PIPE | DOUBLE PIPE

Description
PCASSERTPCASSERTPCASSERTPCASSERT asserts a trigger based on asynchronous input from <signal>. <signal> may be a fixed point
variable or pipe. A trigger is asserted each time the variable changes to a nonzero value, or each time that a
number appears in the input pipe. PCASSERTPCASSERTPCASSERTPCASSERT automatically resets the variable to zero, or removes the value from
the pipe to clear the trigger request. The <signal> is ordinarily used by the host computer to post its commands,
but is not otherwise affected by DAPL operations. Internal DAPL operations should use synchronous triggering
commands for guaranteed synchronization.

PCASSERTPCASSERTPCASSERTPCASSERT differs from other triggering commands in the way it updates the trigger sample count. Commands such
as LIMITLIMITLIMITLIMIT analyze a stream of data. For example, trigger sample numbers are based on the number of values that
LIMITLIMITLIMITLIMIT scans. PCASSERTPCASSERTPCASSERTPCASSERT, on the other hand, does not trigger on events from a data stream.

By default, PCASSPCASSPCASSPCASSERTERTERTERT bases its trigger sample numbers on the sample count of the active input configuration. For
an input configuration with a single sampled channel, the assertion timestamp corresponds to the current sample
number of the active input configuration. When there are multiple input channels in the sampling configuration, or
when a command such as AVERAGEAVERAGEAVERAGEAVERAGE reduces the data rate, this count is too large. In this case, a constant
<ref_rate> can be specified. The input configuration sample count is divided by <ref_rate> before the trigger
is updated.

When the number of samples in the data stream does not have a simple relationship to the sampled data, the
<ref_rate> parameter can alternatively specify a data pipe acting as a reference stream. The contents of this pipe
are counted but not processed, and this count is used for updating the trigger.

PCASSERTPCASSERTPCASSERTPCASSERT is intended for individual, isolated events. PCASSERTPCASSERTPCASSERTPCASSERT will not trigger multiple times on the same
sample. Pipe contents or the variable value can be monitored to check on completion of the request.

274 Chapter 19 DAPL Commands: PCASSERT

Examples

PCASSERT (V, T)

Assert trigger T at the current input sample number whenever variable V is set to a nonzero value by the PC host or
another task.

PCASSERT ($Cp2In, T)
Assert trigger T at the current input sample number whenever a value is received through communication pipe
$Cp2In.

PCASSERT ($BinIn, T)
WAIT(IP(0..7), T, 4000, 4000, $BinOut)

Assert trigger T at the current input sample whenever a value is transferred from the PC host through the pre-
defined communication pipe $BinIn. The event timestamps are relative to data in a single channel, and the WAITWAITWAITWAIT
command accepts any number of channels from an input channel pipe relative to a single channel, so no rate
adjustment is needed. 4000 samples are taken before the event time, and 4000 samples after the event time, for a
total of 8000 samples, 1000 from each channel. The results are transferred back to the PC host through the pre-
defined communication pipe $BinOut.

PCASSERT (PREQUEST, T, 100)
AVERAGE (IP0,100,PAVG)
WAIT (PAVG, T, 0, 1, PCURRENT)

Assert a trigger event for a WAITWAITWAITWAIT command that reads data reduced by an AVERAGEAVERAGEAVERAGEAVERAGE command.

BAVERAGE (IP(0..7), 8, 500, PBAVG)
PCASSERT ($BinIn, T)
TRIGSCALE (T, 0, 8, 500, TADJ)
WAIT (PBAVG, TADJ, 0, 8, $BinOut)

A BAVERAGEBAVERAGEBAVERAGEBAVERAGE command working on 8 channels takes data at 8 times the rate for a single channel, but then reduces
the data by a factor of 500. A request for data arriving through pre-defined communication pipe $BinIn produces
an event in trigger T. A TRIGSCALETRIGSCALETRIGSCALETRIGSCALE command adjusts the timestamp to account for the multiple channels and the
averaging. The most recent set of 8 averaged results is returned to the PC host through the pre-defined $BinOut
channel.

WAIT(IP(5),TFAULT,127,128,PFAULT)
PCASSERT ($BinIn, T, PFAULT)
WAIT(PFAULT,T,255,1,$BinOut)

Faults occur in the measured system at unpredictable times. At each of these fault events, a block of 256 samples
is copied from sample channel IP(5) to the PFAULT pipe. For each request from the PC host through the pre-
defined $BinIn communication pipe, an event location is asserted in trigger T relative to the data count in the
PFAULT pipe. The second WAITWAITWAITWAIT command then reports the most recent 256 captured values to the PC host through
the pre-defined $BinOut communication pipe.

See Also
WAITWAITWAITWAIT, LIMITLIMITLIMITLIMIT

Chapter 19 DAPL Commands: PCOUNT 275

PCOUNT

Define a task that counts the number of values placed into a pipe.

PCOUNT (<in_pipe>, <variable>)

Parameters
<in_pipe>

Input data pipe.
WORD PIPE | LONG PIPE | FLOAT PIPE | DOUBLE PIPE

<variable>
Variable where the counts are incremented.
WORD VARIABLE | LONG VARIABLE

Description
PCOUNTPCOUNTPCOUNTPCOUNT reads values from <in_pipe> and increments the contents of <variable> each time a value is read. The
values are discarded.

<variable> is not reset to zero when a PCOUNTPCOUNTPCOUNTPCOUNT task is started. Consequently, PCOUNTPCOUNTPCOUNTPCOUNT variables can be used to
keep running totals of the number of values placed in pipes. To reset a variable, use a LETLETLETLET command.

A useful application of this command is temporary removal of data from a pipe during application development
and testing.

Example

PCOUNT (P1,V1)

Count the number of values appearing in pipe P1 and update the value of variable V1.

See Also
PVALUEPVALUEPVALUEPVALUE

276 Chapter 19 DAPL Commands: PDEFINE

PDEFINE

Create a processing procedure.

PDEFINE <name>

PDEF <name>

Parameters
<name>

Unique processing procedure name.
Alphanumeric string limited to 23 characters.

Description
PDEFINEPDEFINEPDEFINEPDEFINE begins a group of commands that define a processing procedure.

PDEFINE <name>
 [task definition command] *
END

Each task definition can specify one of the pre-defined commands listed in Chapter 5, a downloaded custom
command, or a DAPL expression calculation.

The ENDENDENDEND command completes the procedure started by the PDEFINEPDEFINEPDEFINEPDEFINE command, making the procedure available for
execution.

<name> must be a unique name assigned to the processing procedure. <name> must be an alphanumeric string
with no spaces and is limited to 23 characters.

Example

PDEFINE PR
...
END

Define a processing procedure named PR.

See Also
ENDENDENDEND, IDEFINEIDEFINEIDEFINEIDEFINE, ODEFINEODEFINEODEFINEODEFINE

Chapter 19 DAPL Commands: PID 277

PID

Define a task for PID feedback control.

PID (<set_pipe>, <fb_pipe>, <gain_pipe>, <Tsamp>, <out_pipe>,
 [<low_clamp>, <high_clamp>])

Parameters
<set_pipe>

Input data pipe for setpoint command levels or trajectory sequences.
WORD PIPE | LONG PIPE | FLOAT PIPE | DOUBLE PIPE

<fb_pipe>
Input data pipe monitoring feedback from plant output.
WORD PIPE | LONG PIPE | FLOAT PIPE | DOUBLE PIPE

<gain_pipe>
Pipe for adjusting control gain settings.
FLOAT PIPE

<Tsamp>
Sampling time interval for normalizing gains.
FLOAT CONSTANT

<out_pipe>
Control output signal to drive plant.
WORD PIPE | LONG PIPE | FLOAT PIPE | DOUBLE PIPE

<low_clamp>
An optional parameter that limits negative control output swings.
WORD CONSTANT | LONG CONSTANT | FLOAT CONSTANT | DOUBLE CONSTANT

<high_clamp>
An optional parameter that limits positive control output swings.
WORD CONSTANT | LONG CONSTANT | FLOAT CONSTANT | DOUBLE CONSTANT

Description
PIDPIDPIDPID implements an “ISO standard form” PID controller, using control gains in natural units. The PIDPIDPIDPID command
reads feedback samples of the controlled system’s output from <fb_pipe>, and compares them to the desired
system output level specified by <set_pipe>. The difference is the control error. The PIDPIDPIDPID command applies the
control gains from <gain_pipe> to compute control output values, which are sent to the <out_pipe>. The
control output values drive the plant. The goal of the feedback control is to make the controlled system output
match the specified setpoint level, reducing the control error to 0.

The PID strategy uses three correction rules to drive the system output toward the setpoint:

1. Proportional correction: Use a greater control effort when the system’s output deviates further from the
setpoint.

2. Integral correction: Use gradually increasing control effort when the system’s output remains away from the
setpoint for an extended time.

278 Chapter 19 DAPL Commands: PID

3. Derivative correction. Decrease the control effort if the system’s output changes too fast, in an effort to damp
out oscillations.

This basic strategy is more formally defined by the following equation:

output = K (e + (<Tsamp>/Ti) * intgrl(e) + (Td/<Tsamp>) * deriv(e))

where

 e = control error
 intgrl(e) = estimated integral of e
 deriv(e) = estimated derivative of e
 K, Ti, Td are the control gains

Gains are specified as a set of four floating point parameters, placed into the <gain_pipe> in the following
order.

K feedback gain, dimensionless

Ti integral time constant in seconds

Td derivative time constant in seconds

Z zero-shaping gain, dimensionless

Some notes regarding the gains:

1. The integral term and derivative term gains are scaled by <Tsamp>, accounting for natural time units.
This makes it possible to adjust the sampling rate without retuning PID gains.

2. The zero shaping “Z gain” is an independent gain multiplier from 0.0 to 1.0 affecting the setpoint
command signal path. There is no effect on the feedback or stability, so it is always safe. In some
applications, a lower value can reduce undesirable transients in response to setpoint changes. A good
tuning strategy is to set Z to 1.0, and tune the basic PID gains for best stabilization. Then, if accurate
tracking of a changing setpoint signal is important, try reducing Z and watch for improved transient
performance.

3. Derivative gain response increases with frequency, and this can lead to excessive amplification of
frequencies close to the Nyquist limit. To avoid noise amplification or destabilization associated with
this, the derivative estimator includes a built-in lowpass filter with rolloff at approximately 1/10 of the
Nyquist limit.

4. For comparison, some other PID commands use the parallel PID form, obtained by combining multipliers
so that each of the PID terms is scaled independently. That form is easier to compute internally, but
harder to analyze and tune.

Place the four gains into the <gain_pipe> as a complete set. To adjust a single gain, specify all gains but repeat
the previous values for the gains that are not changed. Initial gain settings can be loaded using the FILLFILLFILLFILL command.

Setpoint commands can be specified as discrete levels, continuous trajectory streams, or a mix.

• If you provide single isolated setpoint values, the last value received will be treated as a constant level
signal. That value will be used until a new setpoint level is provided.

• If you provide a continuous trajectory stream, the PID command will take one value for each update. It is
important that trajectory samples are queued and ready. If the PIDPIDPIDPID command temporarily runs out of

Chapter 19 DAPL Commands: PID 279

trajectory data and shifts to the isolated level strategy, this can induce a time skew between the desired
trajectory stream and the PID action.

• If you want isolated setpoint values, but with specified transition paths to reach them, place bursts of data
into the <set_pipe>, with the final value of the burst being the new settling level.

The PIDPIDPIDPID command will operate upon any basic data type, but the data types of the command level, feedback, and
output drive signals must match. Considerations when selecting a data type:

• WORD natural fit for sampled data, efficient

• LONG supports extended precision processing well

• FLOAT a little quieter, scales well over small and large signals

• DOUBLE provides the best precision

The <low_clamp> and <high_clamp> parameters limit the output range of the control drive signal. If you
specify one limit, you must specify both. The limits can protect output devices or limit the drive power to large
transient swings. When not specified, the implied limits for fixed point configurations are the range limits of the
number representation; and the implied limits for floating point configurations are minus and plus 32767.

The <low_clamp> and <high_clamp> parameters have another effect. When there are large transients such as at
initial start up, integral control action can have the negative side effect of building up a large accumulation,
yielding an unnecessarily long settling time. The nonlinear anti-windup strategy of the PID command reduces the
transient swings by reducing the integral accumulation rate when a <low_clamp> or <high_clamp> limit is
reached.

Examples

PIPES PLEVEL WORD, PGAIN WORD, PFB WORD, PDRIVE WORD
FILL PLEVEL 18000
FILL PGAIN 8.2 0.08 0.125 1.00
…
PID (PLEVEL,PFB,PGAIN,0.001,PDRIVE)
DACOUT(PDRIVE,1)

Configure a PID control loop to operate upon WORD signals with classic PID action. The initial setpoint level
placed into pipe PLEVEL is 18000. The initial feedback gains are K=8.2, Ti=0.08, Td=0.125, Z=1.00. The
updating time interval is 0.001 seconds. The output limits default to the balanced maximum range –32767 to
+32767. Receive feedback information about system output level from pipe PFB. For each feedback value
received, compute the PID control output and send it to pipe PDRIVE, to be delivered directly to output converter
1.

PIPES PLEVEL FLOAT, PGAIN FLOAT, PFB FLOAT, PDRIVE FLOAT
PID (PLEVEL,PFB,PGAIN,0.001,PDRIVE,0,32767)

Operate the same as in the previous example, but using FLOAT signals. Limit the PID output range so that the
control level never swings negative.

See Also

FILLFILLFILLFILL, DACOUTDACOUTDACOUTDACOUT, PIDLATCHPIDLATCHPIDLATCHPIDLATCH, PIDRAMPPIDRAMPPIDRAMPPIDRAMP, PIDSCRAMPIDSCRAMPIDSCRAMPIDSCRAM

280 Chapter 19 DAPL Commands: PID

Chapter 19 DAPL Commands: PIDLATCH 281

PIDLATCH

Define a task that switches smoothly between direct and feedback control.

PIDLATCH (<set_pipe>, <fb_pipe>, <ctrl_pipe>, <drive_pipe>, <out_pipe>, <switch_pipe>
)

Parameters
<set_pipe>

The pipe driving the PID task setpoint level.
WORD PIPE | LONG PIPE | FLOAT PIPE | DOUBLE PIPE

<fb_pipe>
The controlled feedback signal delivered to the PID controller.
WORD PIPE | LONG PIPE | FLOAT PIPE | DOUBLE PIPE

<ctrl_pipe>
The drive signal calculated by the PID task..
WORD PIPE | LONG PIPE | FLOAT PIPE | DOUBLE PIPE

<drive_pipe>
The controlled drive signal delivered to the plant.
WORD PIPE | LONG PIPE | FLOAT PIPE | DOUBLE PIPE

<out_pipe>
The feedback signal of the plant response.
WORD PIPE | LONG PIPE | FLOAT PIPE | DOUBLE PIPE

<switch_pipe>
Operating mode, 0 or 1.
WORD PIPE

Description
The PIDLATCHPIDLATCHPIDLATCHPIDLATCH command acts as an intermediary between a PID control loop and a controlled plant, so that the
two can operate either in the usual coordinated fashion, or independently, with the plant driven by the setpoint
command directly.

This command is intended for naturally stable systems that have special startup and shutdown requirements. For
example, some systems must be “brought up to speed” in manual mode during a warm-up interval. After that, the
equipment can be switched into active production with feedback control.

The PIDLATCHPIDLATCHPIDLATCHPIDLATCH command monitors the level signal that goes to the PID control.

• the setpoint level <set_pipe>

It captures two signals that ordinarily transfer information between controller and plant.

• the output of the plant <out_pipe>

• the output of the controller<ctrl_pipe>

It delivers two signals to replace the signals that are captured.

282 Chapter 19 DAPL Commands: PIDLATCH

• <drive_pipe> to drive the plant

• <fb_pipe> to drive the controller feedback

By default, the initial operating mode is mode 1. When the operating mode value from <switch_pipe> is 1, the
plant and PID controller operate in ordinary closed loop fashion. The values from the <out_pipe> are relayed
immediately to the <fb_pipe>, to drive PID task operation, and the values from the <ctrl_pipe> are relayed
immediately to the <drive_pipe>, to drive the plant. When the operating mode value from <switch_pipe>
equals 0, the PID controller and plant operate independently. The disconnected controller passively tracks the
plant output level, while the plant is driven by a smoothed version of the setpoint level from <set_pipe>. The
state of the PID controller remains close to the state of the plant, so there is minimal transient disturbance when
the operating mode is restored to 1 to resume closed loop operation.

All basic data types are supported, but the data types of all signal pipes must match.

Example
PIPE PSWITCH WORD
FILL PSWITCH 0
…
PID(PSET,PIDFB,PGAINS,0.01,PIDOUT)
PIDLATCH (PSET,PIDFB,PIDOUT,PDRIVE,POUT,PSWITCH)

Configure a PIDLATCHPIDLATCHPIDLATCHPIDLATCH task to monitor the setpoint PSET of a PID processing command. Capture its output signal
PIDOUT. Substitute drive signal PDRIVE to drive the plant, while the plant output is captured by pipe POUT. The
substitute feedback signal sent to the PID controller is PIDFB. The mode switch PSWITCH is pre-loaded with a
value 0, which means that the controller and plant operate independently, with the plant following the PSET signal
without PID control.

See Also

 PIDPIDPIDPID, PIDRAMPPIDRAMPPIDRAMPPIDRAMP

Chapter 19 DAPL Commands: PIDRAMP 283

PIDRAMP

Define a task that generates smooth transition ramps between control levels.

PIDRAMP (<level_pipe>, <ramp_pipe>, <duration>, <shape>)

Parameters
<level_pipe>

Pipe receiving isolated setpoint command levels.
WORD PIPE | LONG PIPE | FLOAT PIPE | DOUBLE PIPE

<ramp_pipe>
Output pipe receiving data for smooth level-to-level transitions.
WORD PIPE | LONG PIPE | FLOAT PIPE | DOUBLE PIPE

<duration>
Transition width.
WORD CONSTANT | WORD VARIABLE | WORD PIPE

<shape>
Identifier string for transition shape.
STRING

Description
The PIDRAMPPIDRAMPPIDRAMPPIDRAMP command converts isolated control-level values into smooth transitions from level to level.
PIDRAMPPIDRAMPPIDRAMPPIDRAMP is used in conjunction with a PIDPIDPIDPID command or other control loop command that accepts a steady level or
a trajectory sequence. Smooth ramping helps to avoid oscillations in systems with poor stability. Complex ramping
sequences can be pre-configured and run as a “batch” without further supervisory intervention.

Isolated input level values are received from <level_pipe>. As each is received, the PIDRAMPPIDRAMPPIDRAMPPIDRAMP command
generates the number of output values specified by the pipe or scalar <duration>, placing the data for the
smoothed trajectory into <ramp_pipe>. At the final end of the smooth transition, the last value is the desired new
level. The number of points in each transition cannot exceed 4096. The transition style is specified by parameter
<shape>, which must be one of the following strings enclosed in double-quotes.

• “LINEAR”
The best choice to limit the maximum rate of change during the transition, but there is a small
discontinuity in the first derivative at each end.

• “EXPONENTIAL”
The best choice to depart the old level quickly and devote most of the transition time to accurate final
settling.

• “HYPERBOLIC”
A symmetrical “S”-shaped transition that avoids discontinuity in values and derivatives at both ends, with
fastest change in the middle.

The PIDRAMPPIDRAMPPIDRAMPPIDRAMP command will generate any of the basic data types. The data types of the <level_pipe> and the
<ramp_pipe> must match.

284 Chapter 19 DAPL Commands: PIDRAMP

Examples

PIDRAMP (PLEVEL,PSMOOTH,40,”EXPONENTIAL”)
...
FILL PLEVEL 10000

Receive a command from pipe PLEVEL to make a transition from the current operating level to a new operating
setpoint 10000. The output command sequence is sent to a PID loop via output pipe PSMOOTH. The transition takes
40 samples and approaches the new target level exponentially.

PIPE PLEVELS FLOAT
PIPE PDURATIONS WORD
FILL PLEVELS 0.00 20000.00 20000.00 0.00
FILL PDURATION 200 500 10000 500
...
PIDRAMP (PLEVELS,PSMOOTH,PDURATIONS,”HYPERBOLIC”)

Execute a 4-move sequence in which hyperbolic transition shapes are smooth at both ends of each transition. The
sequence is preloaded into pipes PLEVELS and PDURATIONS. For the first move, use 200 samples to reach starting
output level 0.00. For the second move, shift to level 20000.00 in 500 samples. For the third move, hold the
20000.00 level for 10000 samples. For the last move, take 500 samples to return to the 0.00 level. The complete
set of 11200 trajectory points will be computed and delivered to the control loop command input via the PSMOOTH
pipe.

See Also

FILLFILLFILLFILL, DACOUTDACOUTDACOUTDACOUT, PIDLATCHPIDLATCHPIDLATCHPIDLATCH, PPPPIDSCRAMIDSCRAMIDSCRAMIDSCRAM

Chapter 19 DAPL Commands: PIDSCRAM 285

PIDSCRAM

Define a task that overrides a feedback loop for emergency shutdown.

PIDSCRAM (<drive_pipe>, <override_pipe>,
<safelevel>, <duration>, <shape>, <scram_trig>)

Parameters
<drive_pipe>

Pipe providing the original control loop drive signal.
WORD PIPE | LONG PIPE | FLOAT PIPE | DOUBLE PIPE

<override_pipe>
Pipe receiving pass-through drive signal or override shutdown sequence.
WORD PIPE | LONG PIPE | FLOAT PIPE | DOUBLE PIPE

<safelevel>
Safe level for end of shutdown transition.
WORD CONSTANT | LONG CONSTANT | FLOAT CONSTANT | DOUBLE CONSTANT

<duration>
Transition width.
WORD CONSTANT

<shape>
Identifier string for transition shape.
STRING

<scram_trig>
Software trigger reporting emergency shutdown event.
TRIGGER

Description
The PIDSCRAMPIDSCRAMPIDSCRAMPIDSCRAM command responds to emergency shutdown signals received by the <scram_trig> software
trigger. When a shutdown event is detected, it replaces the normal control drive signal from <drive_pipe> with
a controlled shutdown sequence in <override_pipe>. Under ordinary operation, the original drive signal in
<drive_pipe> passes through directly to <override_pipe> with no change.

PIDSCRAMPIDSCRAMPIDSCRAMPIDSCRAM allows dedicated safety hardware or other supervisory fault detection systems to coordinate system
shutdown sequencing when the control loop is part of a larger interconnected system. PIDSCRAMPIDSCRAMPIDSCRAMPIDSCRAM is appropriate
when there is risk of system damage if the system fault condition is allowed to persist, but the supervisory system
is not able to respond fast enough. The PIDSCRAMPIDSCRAMPIDSCRAMPIDSCRAM command ensures that the control loop shuts down
autonomously, so that the only follow-up action required from supervisory control is the final power-down.

There is a cost in latency and response jitter by having the additional task receiving and retransmitting the control
drive signal, so this disadvantage must be weighted against advantages of system safety.

The safe shutdown level is specified by the <safelevel> parameter. This value is the final value of the
shutdown transition. The data type of the <safelevel> parameter must match the <drive_pipe> and
<override_pipe>.

286 Chapter 19 DAPL Commands: PIDSCRAM

The number of samples spanned by the shutdown transition is specified by the <duration> parameter.

The transition style is specified by parameter <shape>, which must be one of the following strings enclosed in
double-quotes.

• “LINEAR”
The best choice to limit the maximum rate of change during the transition, but there is a small
discontinuity in the first derivative at each end.

• “EXPONENTIAL”
The best choice to depart the old level quickly and devote most of the transition time to accurate final
settling.

• “HYPERBOLIC”
A symmetrical “S”-shaped transition that avoids discontinuity in values and derivatives at both ends.

Example

PIDSCRAM (PCTRL,PSCRAM,0,60,”EXPONENTIAL”,SCRAMTRIG)

Pass the control drive signal from pipe PCTRL to pipe PSCRAM without change, until trigger SCRAMTRIG detects
the signal of an emergency shutdown event. When that occurs, make a smooth transition from the current output
level to safe output level 0 in 60 steps, using an exponential transition shape.

See Also

PIDPIDPIDPID, PIDRAMPPIDRAMPPIDRAMPPIDRAMP

Chapter 19 DAPL Commands: PIPES 287

PIPES

Create new pipes for transferring data between tasks.

PIPES <pipe_def> [, <pipe_def>]*

PIPE <pipe_def> [, <pipe_def>]*

P <pipe_def> [, <pipe_def>]*

<pipe_def> = <pipe_name> [MAXSIZE=<max_size>] [STATIC]
 [BYTE | WORD | LONG | FLOAT | DOUBLE]

Parameters
<pipe_name>

Assigned pipe name.

<max_size>
The maximum number of values that can be held in the pipe.
WORD CONSTANT | LONG CONSTANT

Description
The PIPESPIPESPIPESPIPES command creates pipes for streaming data between processing tasks. The data-type keyword BYTE,
WORD, LONG, FLOAT, or DOUBLE specifies the type of the pipe contents. BYTE is not a computational type, but it
indicates that the pipe contents are 8-bit text.

Pipes contain storage buffer areas, which in turn contain data. Pipes might have storage areas set up at the time
they are defined, but the storage areas will initially contain no data.

<max_size> sets the maximum number of values that can be held in the pipe buffer storage. The actual maximum
size may be slightly larger than the number specified, because of internal system rounding. If a maximum size is
not specified, it defaults to 32768. The DAPL system will assign to the pipe only as much memory as needed, up
to the MAXSIZE limit. In most cases, it is best to omit the MAXSIZE parameter and let DAPL take care of providing
the right amount of buffer memory for best performance. There are some situations, however, where it is useful to
adjust the storage size. For pipes that tend to accumulate an excessive data backlog if allowed to do so, the backlog
size can be bounded by limiting the pipe capacity. Also, some applications process huge data blocks as a single
unit, and for these MAXSIZE can be made larger.

For some real-time applications, the small amounts of time to dynamically allocate and release blocks of buffer
storage for pipes can mean unacceptable delays in delivering data. These applications can specify the STATIC
option. This option tells the pipe to use only pre-allocated buffer memory from a storage area of MAXSIZE
(typically, much smaller than the default value). This avoids the overhead of allocating and releasing storage from
a free-memory pool. The STATIC option is not always a good idea, however, because it forces all data to be copied
through the memory in the pipe’s reserved buffers, disabling data management optimizations that might be
available otherwise.

If the number of values held by the pipe reaches MAXSIZE, and more data arrive to go into that pipe, the pipe
cannot accept the additional data. The task attempting to make this transfer is temporarily suspended until some

288 Chapter 19 DAPL Commands: PIPES

data are removed from the pipe to make more capacity available. When a reader task has copied all available new
data from a pipe, and the pipe has no new data to send when the reader task attempts to read more, the reader task
is temporarily suspended until some other task provides the new data.

Examples

PIPE P1

Define the pipe P1, with the default data type of WORD and the default maximum capacity of 32768 values.

PIPES P2 MAXSIZE=1024, P3 LONG
Define a WORD pipe P2 with maximum capacity 1024 values, and a LONG pipe P3 with default maximum capacity.

PIPE A256 MAXSIZE=256 STATIC
Define a pipe A256 that uses pre-allocated buffer storage with a 256-item capacity limit.

See Also
EMPTYEMPTYEMPTYEMPTY, FILLFILLFILLFILL

Chapter 19 DAPL Commands: POLAR 289

POLAR

Define a task that converts complex data pairs from Cartesian to polar coordinates.

POLAR (<p1>, <p2>, <p3>, <p4>)

Parameters
<p1>

The pipe that provides the real parts of input complex numbers.
WORD PIPE | LONG PIPE | FLOAT PIPE | DOUBLE PIPE

<p2>
The pipe that provides the imaginary parts of input complex numbers.
WORD PIPE | LONG PIPE | FLOAT PIPE | DOUBLE PIPE

<p3>
The pipe that receives the amplitude of the complex result.
WORD PIPE | LONG PIPE | FLOAT PIPE | DOUBLE PIPE

<p4>
The pipe that receives the phase of the complex result.
WORD PIPE | LONG PIPE | FLOAT PIPE | DOUBLE PIPE

Description
The PIPESPIPESPIPESPIPES command converts input data into polar coordinates. <p1> and <p2> are pipes that provide real and
imaginary parts of complex number pairs. <p3> and <p4> are pipes that receive the amplitude and phase parts of
the complex numbers in polar form. The data types for all input and output pipes must be the same.

Floating point phase results are in radians and require no conversions, but you can convert to degrees using a
DAPL expression to multiply by 180/π. For fixed point data, the phase is expressed in a normalized form, where
the largest positive value represents π, and the largest negative value represents –π.To convert WORD phase data to
radians, multiply times π and divide by32768. To convert LONG phase data to radians, multiply times π and divide
by 2147483648. For example, the following DAPL expression performs a conversion to degrees for WORD data
type.

PDEG = PRAD * 180 / 32768

Quantization and noise can make phase angle results erratic when the values of the real and imaginary parts are
both very small. This is an inherent hazard of the polar representation, and there is no consistent action that the
PIPESPIPESPIPESPIPES command can take to correct for this.

If you need only the magnitude part or the angle part, consider using the CMAGCMAGCMAGCMAG or the CANGLECANGLECANGLECANGLE command for better
efficiency.

Example

POLAR (P1, P2, P3, P4)

290 Chapter 19 DAPL Commands: POLAR

Read real and imaginary parts of complex numbers from P1 and P2, and return amplitude and phase in P3 and P4.

See Also
DECIBELDECIBELDECIBELDECIBEL, FFTFFTFFTFFT, CMAGCMAGCMAGCMAG, CANGLECANGLECANGLECANGLE

Chapter 19 DAPL Commands: PRIORITY 291

PRIORITY

Establish the execution priority of tasks defined in a processing procedure.

PRIORITY <priority_number>

Parameters
<priority_number>

Priority level in the range 1 to 4.
WORD CONSTANT

Description
The PRIORITYPRIORITYPRIORITYPRIORITY command assigns an execution priority to all of the tasks in a processing procedure. If specified, a
PRIORITYPRIORITYPRIORITYPRIORITY command must appear after the PRIORITYPRIORITYPRIORITYPRIORITY command but before the processing tasks are defined. The
priority ranges from 1 (lowest) to 4 (highest). The default priority level of 2 is assumed when the PRIORITYPRIORITYPRIORITYPRIORITY
command is omitted. Most processing should run at the default priority level.

Within one priority level, every task gets an equal opportunity to execute. None of the tasks in a processing
configuration with lower priority will be scheduled to execute until processing is suspended in all higher priority
tasks. However, if tasks at lower priority constrain the execution of a higher priority task, the lower priority task
may temporarily run in place of the constrained higher-level task until the conflict is resolved. For example, a
lower-priority task might remove data from a pipe so that a higher-priority task can write new data there.

Real-time response latency is sometimes improved dramatically by shifting essential time-critical parts of the
processing to separate tasks at a higher priority level, with routine data movement and bulk processing performed
at a lower level.

Example

PDEFINE HiPriority
 PRIORITY 3
 // task definitions here
END

Declare that all tasks in the processing procedure HiPriority will execute at higher than normal priority, for
critical real-time response.

See Also
PDEFINEPDEFINEPDEFINEPDEFINE, and the chapter Prioritized Multitasking

292 Chapter 19 DAPL Commands: PULSECOUNT

PULSECOUNT

Define a task that counts low to high bit transitions.

PULSECOUNT (<in_pipe>, <bit_number>, <cnt>)

Parameters
<in_pipe>

Input data pipe.
WORD PIPE

<bit_number>
A value that represents the bit number from which low to high transitions are detected.
WORD CONSTANT

<cnt>
A variable that is incremented by one every time a low to high transition is detected.
WORD VARIABLE | LONG VARIABLE

Description
PULSECOUNTPULSECOUNTPULSECOUNTPULSECOUNT reads data from <in_pipe> and detects low to high transitions of bit <bit_number>. Bit 0 is the
least significant bit. Every time a low to high transition is detected, the value of variable <cnt> is incremented by
one.

Example

PULSECOUNT (P, 4, V)

Read data from pipe P and increment variable V whenever bit 4 of the data changes from zero to one.

See Also
CTCOUNTCTCOUNTCTCOUNTCTCOUNT, FREQUENCYFREQUENCYFREQUENCYFREQUENCY

Chapter 19 DAPL Commands: PVALUE 293

PVALUE

Define a task that updates a variable with the most recent value from a pipe.

PVALUE (<in_pipe>, <variable>)

Parameters
<in_pipe>

Input data pipe.
WORD PIPE | LONG PIPE | FLOAT PIPE | DOUBLE PIPE

<variable>
The variable that is updated.
WORD VARIABLE | LONG VARIABLE | FLOAT VARIABLE | DOUBLE VARIABLE

Description
PVALUEPVALUEPVALUEPVALUE reads data from <in_pipe> and updates <variable> with the most recent value. The data types of the
pipe and variable must match.

Example

PVALUE (P1, V1)

Read data from P1 and place the data in variable V1.

See Also
PCOUNTPCOUNTPCOUNTPCOUNT

294 Chapter 19 DAPL Commands: PWM

PWM

Encode a signal level using pulse-width modulation.

PWM (<in_pipe>, <minpulse>, <modbit>, <source>, <encoded>)

Parameters
<in_pipe>

Input signal level data.
WORD PIPE

<minpulse>
Nominal lower bound on the width of a pulse.
WORD CONSTANT

<modbit>
Bit position, 0 to 15, for the bit to be modulated.
WORD CONSTANT

<source>
An initial digital stream prior to modulating.
WORD PIPE

<encoded>
Output data stream for digital port after modulation.
WORD PIPE

Description
PWMPWMPWMPWM is an abbreviation for Pulse Width Modulation. This command allows encoding a continuous positive signal
from <in_pipe> as digital pulses of varying width, where the average output level corresponds to the level of the
input signal. The encoded output sequence replaces a selected bit position <modbit> from the original digital data
stream <source>, producing a modified output stream <encoded>. If you do not have any prior content for the
digital stream, a DAPL expression can initialize a stream for you, for example:

PSTREAM = 0

The level from <in_pipe> specifies a duty cycle between 0 and 1. If <in_pipe> has a FLOAT data type, the
values are in the natural range from 0.0 to 1.0. If the <in_pipe> has a WORD data type, the full numeric range
from 0 to 32767 represents duty cycles from 0.0 to 1.0 proportionally.

PWMPWMPWMPWM toggles the value of the encoded bit so that the average of the pulsed signal levels equals the level of the input
signal. PWMPWMPWMPWM watches the running average of the output levels and switches when this value is too low or too high
compared to the reference level from <in_pipe>. For an input modulation level of 0, the modulated signal bit
will be continuously 0. For an input modulation level of 32767, the modulated signal bit will be continuously 1.
For an input modulation level of 16384, the modulated signal bit will be 0 for 50% of the time and 1 for 50% of
the time. Avoid noisy modulation level signals and extremes of range for best results.

Chapter 19 DAPL Commands: PWM 295

To avoid chatter or overheating from too rapid switching, PWMPWMPWMPWM enforces a minimum pulse width <minpulse>.
After a switching transition, PWMPWMPWMPWM holds the new 0 or 1 level for the number of samples indicated by <minpulse>.
This can result in slightly larger excursions from a perfect balance over the short term, but over the long run the
tracking of the average level remains accurate.

Example

PIPES PSTREAM WORD
…
PSTREAM = 0
PWM(PLEVEL, 25, 15, PSTREAM, OPIPE1)

Encode the high order bit 15 of an initially empty data stream PSTREAM with a pulse width modulated sequence.
The modulation level is specified by values from the pipe PLEVEL. The minimum high or low output pulse
duration is 25 samples. The modulated sequence is sent directly to an output channel pipe OPIPE1 for driving
clocked output to a digital port.

See Also
ODEFINEODEFINEODEFINEODEFINE, PIDPIDPIDPID

296 Chapter 19 DAPL Commands: QDCOUNT

QDCOUNT

Convert 16-bit Quadrature Decoder Board counts into a running sum.

QDCOUNT (<inpipe>, [<initial>,] [<mode>,] <outpipe>)

Parameters
<inpipe>

Input data pipe of 16-bit counts from a Quadrature Decoder Board.
WORD PIPE

<initial>
Initializer value for the running count accumulator.
WORD CONSTANT | LONG CONSTANT

<mode>
Keyword string specifying the operating mode.
STRING

<outpipe>
Output data pipe.
WORD PIPE | LONG PIPE

Description
The QDCOUNTQDCOUNTQDCOUNTQDCOUNT command converts a sequence of readings of the 16-bit running counter on a Quadrature Decoder
Board to produce a running, signed 32-bit count. Many applications accumulate counts that exceed the range
representable by the 16-bit hardware counter on a Quadrature Decoder Board. The QDCOUNTQDCOUNTQDCOUNTQDCOUNT command detects the
overflow events and corrects for them, yielding an accurate 32-bit count. There is one important restriction,
however. The application sampling rate must be designed to assure that no more than 32767 counts up or down
can accumulate between readings from the Quadrature Decoder Board. Otherwise, it is not possible to determine
whether a new reading from the 16-bit hardware counter indicates an increase or a decrease, thus resulting in an
incorrect running sum.

The <inpipe> provides a sequence of sample values, obtained by reading the running 16-bit counter register on
the Quadrature Decoder Board.

The optional <initial> parameter specifies an initial value for the 32-bit count accumulator. If this parameter is
omitted, the starting value of the 32-bit count will be zero.

The optional <mode> parameter is a quoted string specifying an operating mode that affects the way processing is
started. The QDCOUNTQDCOUNTQDCOUNTQDCOUNT command has two operating modes. If the keyword “ABSOLUTE” or “ABS” is specified as
the mode string, all counts present in the Quadrature Decoder Board register are considered meaningful. For this
mode, the first output produced by the command will equal this first value plus the specified initial counter state.
On the other hand, if the keyword “RELATIVE” or “REL” is specified as the mode string, QDCOUNTQDCOUNTQDCOUNTQDCOUNT presumes that
an indeterminate number of counts could exist in the Quadrature Decoder Board count register at the time when
processing starts, so only changes subsequent to the initial count matter. For this mode, the first output produced
by the command equals the <initial> parameter, and subsequent outputs reflect the cumulative change in counts
relative to the first observed count. If the <mode> option is omitted, the default value is “RELATIVE”.

Chapter 19 DAPL Commands: QDCOUNT 297

The <outpipe> parameter specifies an output pipe. For each value received from <inpipe>, one value is written
to <outpipe> . Each output value reports the current updated value of the 32-bit internal accumulator. If
<outpipe> is a WORD valued pipe, the higher 16 bits are truncated, which could result in an overflow condition if
the 32-bit accumulated count is too large. There is no protection from overflow conditions for either a WORD or
LONG valued output pipe, but overflow is more likely to be a problem for the WORD case because of the relatively
limited count range.

The QDCOUNTQDCOUNTQDCOUNTQDCOUNT command responds to the value of OPTIONS BUFFERINGOPTIONS BUFFERINGOPTIONS BUFFERINGOPTIONS BUFFERING at the time that the QDCOUNTQDCOUNTQDCOUNTQDCOUNT starts. If
used in control applications requiring minimal response latency (at the expenses of more processing overhead),
specify the BUFFERING=OFF option.

The initialization sequence in the QDCOUNTQDCOUNTQDCOUNTQDCOUNT command is different than it was in earlier 16-bit versions of this
command. This can affect the number and value of samples at the beginning of a measurement sequence. Be sure
to retest when substituting the newer DAPL system version into an existing application that previously used the
16-bit custom command version. If an application downloads the 16-bit QDCOUNTQDCOUNTQDCOUNTQDCOUNT custom command version, this
substitutes it for the 32-bit DAPL version until the next time the DAPL system is loaded.

Examples

QDCOUNT(PQD, PRUN32)

Accumulate a running 32-bit count, receiving 16-bit Quadrature Decoder Board readings from the WORD pipe PQD,
and placing the updated values of the 32-bit running sum in the 32-bit pipe PRUN32. The default initial count of 0
and the default “RELATIVE” processing mode are used.

QDCOUNT(PQD2, 1024, “ABSOLUTE”, PRUN16)
Accumulate a running 32-bit count, but report only the low order 16 bits, receiving 16-bit Quadrature Decoder
Board readings from the WORD pipe PQD2, and placing the low 16 bits of the 32-bit running sum into 16-bit pipe
PRUN16. An initial count offset of 1024 is applied to the running sum, and the “ABSOLUTE” processing mode is
used.

See Also
CTCOUNTCTCOUNTCTCOUNTCTCOUNT, CTRATECTRATECTRATECTRATE

298 Chapter 19 DAPL Commands: QDECODE

QDECODE

Define a task that counts up-down pulses from a quadrature encoder.

QDECODE (<pport>, <bits>, <out> [, <decim>])

Parameters
<pport>

Data sequence obtained by sampling a digital port.
WORD PIPE

<bits>
Address of encoded signal pair in the digital port.
WORD CONSTANT

<out>
Destination of decoded output count.
LONG PIPE | LONG VARIABLE

<decim>
Optional decimation factor to use with output pipe option.
WORD CONSTANT

Description
The QDECODEQDECODEQDECODEQDECODE command monitors the angular position of a rotating mechanism having an attached quadrature
encoder. Samples are captured from the digital port and read from pipe <pport>. The bits to analyze are indicated
by the <bits> parameter. Based on an analysis of the sequence of digital transitions, positive and negative counts
of rotation are accumulated. The current sum value is posted to the output <out>.

One digital signal alone would be enough to indicate that the device is rotating, but not the direction. Using the
two signals in combination, it is possible to identify both the movement and its direction. The QDECODEQDECODEQDECODEQDECODE command
reviews all of the input data and maintains the running sum of the position steps, up or down, and the result
corresponds to the current angular position. The first sample determines the starting state and initializes the
counter to zero. Updating of the internal accumulator starts with the next sample.

QDECODEQDECODEQDECODEQDECODE is intended for applications in which rotating speeds and ranges of motion are relatively small. An
example would be monitoring the position of a manually-operated control wheel. Encoder applications with high-
speed rotating equipment or multiple channels should use a hardware-based implementation such as the Microstar
Laboratories quadrature decoder board, MSXB 050.

The output behavior of QDECODEQDECODEQDECODEQDECODE is a little different depending on whether the results go to a pipe or a variable.
The <out> parameter can be a shared variable to allow other tasks to read the data at whatever times they wish.
For this case, the QDECODEQDECODEQDECODEQDECODE task wastes no time bringing <out> up to the most current value, grabbing a block
with as much new data as possible and updating the value of <out> after the block is analyzed. The <out>
parameter can be a pipe to observe the count at regular intervals for logging or feedback control. If there is no
optional <decim> specification, the <out> pipe receives an update after processing each input value. Ordinarily,
the encoder is sampled at a high rate, faster than other data streams. To reduce the data rate so that the QDECODEQDECODEQDECODEQDECODE
output rate matches the other data streams, let <decim> specify a positive integer value. Then, the <out> pipe
receives one value for each <decim> values processed from the input stream.

Chapter 19 DAPL Commands: QDECODE 299

The signals from the quadrature encoder are a pair of TTL digital signals connected to adjacent pins on the Data
Acquisition Processor board’s digital port. At a constant rotation speed, the encoder device produces square wave
outputs on the two digital lines, with the transitions of one signal in the center of the squared pulses from the other
signal. Or, in other words, the two signals are "in quadrature" at 90 degrees phase shift. Transitions never occur
simultaneously on both lines. The two digital signals must be adjacent bits on the digital port, starting with an
even-numbered bit: bit positions 0-1, or bit positions 2-3, etc. Specify the location of the bit pair using the <bits>
parameter.

To detect every pulse accurately, the sampling rate for the digital port must be at least double the rate at which the
encoder produces transitions at maximum rotating speed. The following example configuration samples the
quadrature decoder signals at four times the rate of data capture in two analog channels.

 Idefine An2QD
 channels 8
 set IP0 b0 // digital encoder bits
 set IP1 g
 set IP2 b0 // digital encoder bits
 set IP3 d0 // ANALOG 0
 set IP4 b0 // digital encoder bits
 set IP5 g
 set IP6 b0 // digital encoder bits
 set IP7 d1 // ANALOG 1
 time 2.4
 end

Examples

QDECODE(IP(0,2,4,6), 2, PACCUM, 4)
Using the input sampling configuration shown in the example above, obtain an input stream of samples from the
digital port, with the data arriving at a high rate. Observe the bit transitions at digital port positions 2 and 3.
Depending on the observed changes in the bits, appropriately update the accumulated count. Every four input
samples, report one current count value to pipe PACCUM, producing an update rate that matches the sample rate for
analog samples in IP3 and IP7.

QDECODE(PDIG, 10, VQ)
Obtain digital port samples through pipe PDIG. Observe the bit transitions at digital port positions 10 and 11 and
from these determine the current angular position count. Place this into shared variable VQ.

See Also
QDCOUNTQDCOUNTQDCOUNTQDCOUNT

300 Chapter 19 DAPL Commands: RANDOM

RANDOM

Define a task that generates positive pseudorandom numbers.

RANDOM (<type>, <seed>, <out_pipe>)

Parameters
<type>

This parameter is for future expansion and must be zero.
WORD CONSTANT

<seed>
A value that initializes the sequence of random numbers.
WORD CONSTANT | LONG CONSTANT

<out_pipe>
Output data pipe for pseudorandom numbers.
WORD PIPE | LONG PIPE | FLOAT PIPE | DOUBLE PIPE

Description
RANDOMRANDOMRANDOMRANDOM generates pseudorandom numbers appropriate for the specified <out_pipe>. Random numbers can be
sent to a digital-to-analog converter to generate white noise.

<type> is reserved for a distribution selector code and must be 0. Type 0 uses a composite 32-bit generator to
produce uniformly distributed 16 or 32 bit values. The FLOAT and DOUBLE output values are the same results as
the fixed point numbers but scaled to range 0.0 to 1.0, so the full precision of DOUBLE data type is not used. While
statistical properties are quite good, this is not a cryptographically strong generator, and in particular, the behaviors
of individual bits must not be presumed random.

<seed> determines the sequence of random numbers. Any nonzero value generates a predetermined, reproducible
sequence of numbers. A value of zero creates an unpredictable seed derived from the Data Acquisition Processor
real-time clock.

Examples

PIPE P1
RANDOM (0, 0, P1)

Send pseudorandom numbers between 0 and 32767 to WORD pipe P1.

PIPE P1L LONG, P2W
…
RANDOM (0, 1774985, P1L)
P2W = P1L/32768 - 32768

Send predetermined pseudorandom numbers uniformly distributed between –32767 and 32767 to WORD pipe P2W.

Chapter 19 DAPL Commands: RANGE 301

RANGE

Define a task that transfers data in a specified region from an input pipe to an output pipe.

RANGE (<in_pipe>, <region>, <out_pipe>)

Parameters
<in_pipe>

Input data pipe.
WORD PIPE | LONG PIPE | FLOAT PIPE | DOUBLE PIPE

<region>
A region selecting the data values to transfer.
REGION

<out_pipe>
Output data pipe.
WORD PIPE | LONG PIPE | FLOAT PIPE | DOUBLE PIPE

Description
RANGERANGERANGERANGE transfers data values that satisfy the condition specified by <region>, copying them from <in_pipe> to
<out_pipe>. Values that do not satisfy <region> are ignored. The data types of the input and output pipes must
match.

Use caution when using RANGERANGERANGERANGE in combination with other processing. The amount of data written to <out_pipe>
varies with the content of the data stream, making data transfer rates unpredictable.

Example

RANGE (P1, INSIDE,-1000.0,1000.0, P2)

Read data from pipe P1. For each value received, if the value is greater than or equal to -1000.0, and less than or
equal to 1000.0, copy the value to pipe P2. Otherwise, discard the value and do not place it into pipe P2.

See Also
BOUNDBOUNDBOUNDBOUND, HIGHHIGHHIGHHIGH, LIMITLIMITLIMITLIMIT, LOWLOWLOWLOW

302 Chapter 19 DAPL Commands: RAVERAGE

RAVERAGE

Define a task that computes the running average of a data stream.

RAVERAGE (<in_pipe>, <count>, <out_pipe>, [<phase_correction>])

Parameters
<in_pipe>

Input data pipe.
WORD PIPE | LONG PIPE | FLOAT PIPE | DOUBLE PIPE

<count>
A positive integer that specifies the number of terms averaged.
WORD CONSTANT | LONG CONSTANT

<out_pipe>
Output data pipe.
WORD PIPE | LONG PIPE | FLOAT PIPE | DOUBLE PIPE

<phase_correction>
An optional parameter requesting a time-shift correction for filtering applications.
WORD CONSTANT

Description
For each value RAVERAGERAVERAGERAVERAGERAVERAGE reads from <in_pipe>, it computes the average of the last <count> values, and puts
this running average into <out_pipe>. <count> is a positive integer. Unlike the AVERAGEAVERAGEAVERAGEAVERAGE command that
computes one result per block of data, RAVERAGERAVERAGERAVERAGERAVERAGE computes a new result for each new value. The data types of the
input and output pipes must match.

RAVERAGERAVERAGERAVERAGERAVERAGE begins generating output only after <count> samples are read. This produces a “time lag” between the
input and output streams. This can be important in triggering applications because a trigger assertion generated
from processed data contains a different sample count than the sample count of a trigger assertion from
unprocessed data. If the optional parameter <phase_correction> is present, some artificial initial output values
are generated so that the original input samples and the samples produced by RAVERAGERAVERAGERAVERAGERAVERAGE correspond one-for-one.
The value of this parameter is ignored, but using –1 is suggested to make operation similar to the FIRFILTERFIRFILTERFIRFILTERFIRFILTER
command.

Example

RAVERAGE (P1, 10, P2, -1)

Reads data from pipe P1, compute the averages of moving windows of 10 values, and put the average values in
pipe P2. Use the phase correction option, so that the input and output sequences will contain the same number of
samples and align when displayed on the same plot.

See Also
AVERAGEAVERAGEAVERAGEAVERAGE, BAVERAGEBAVERAGEBAVERAGEBAVERAGE, FIRFILTERFIRFILTERFIRFILTERFIRFILTER

Chapter 19 DAPL Commands: REPLICATE 303

REPLICATE

Define a task that replicates data values.

REPLICATE (<in_pipe>, <cnt>, <out_pipe>)

Parameters
<in_pipe>

Input data pipe.
WORD PIPE | LONG PIPE | FLOAT PIPE | DOUBLE PIPE

<cnt>
A value that specifies the number of copies of each data value to transfer.
WORD CONSTANT | LONG CONSTANT

<out_pipe>
Output data pipe.
WORD PIPE | LONG PIPE | FLOAT PIPE | DOUBLE PIPE

Description
REPLICATEREPLICATEREPLICATEREPLICATE reads data values from <in_pipe> and places <cnt> copies of each data value into <out_pipe>.
The data types of the input and output pipes must match.

Example

REPLICATE (P1, 3, P2)

Transfer three copies of each data value from P1 into pipe P2.

See Also
COPYCOPYCOPYCOPY, MERGEMERGEMERGEMERGE

304 Chapter 19 DAPL Commands: RESET

RESET

RESET [<option>]

Clear configurations, logs and system options.

Parameters
<option>

Option name.

Description
RESETRESETRESETRESET clears user-defined configurations and stored results, as specified by the <option> keyword. The
supported options are:

---- no option no option no option no option---- Stop any running application configurations,
and clear all application configurations from
memory.

SYSLOGSYSLOGSYSLOGSYSLOG Clear the contents of the system error message
and event log.

ALLALLALLALL Stop any running application configurations,
and clear them all from configuration memory.
Clear the contents of the system error message
and event log. Reset system configuration
options.

The main purpose of the RESETRESETRESETRESET command is to clear user applications. This stops any running configurations,
clears all user-defined configurations, clears any unused data, releases allocated memory, and erase all user-
defined elements except communication pipes and downloaded command modules. Placing a RESETRESETRESETRESET command at
the beginning of each configuration ensures that no stray elements from a previous run interfere with the current
configuration.

To clear all previous message from the system log, use the RESETRESETRESETRESET command with the SYSLOG keyword. A RESETRESETRESETRESET
command without an <option> keyword does not affect the error message history stored in the system log.

To completely clear the system state back to a power-up initial state, use the RESETRESETRESETRESET command with the ALL
keyword. In addition to stopping and clearing all user configurations, and clearing the system log history, this
resets all configurable system options to defaults in the manner of the OPTIONSOPTIONSOPTIONSOPTIONS RESET command. Use this with
extreme caution, particularly in an interactive software environment such as DAPstudio, because it can produce
major unexpected side effects such as silencing interactive command displays.

Example

RESET

Chapter 19 DAPL Commands: RESET 305

Before stopping a measurement application, stop all user-configured tasks on the Data Acquisition Processor,
remove all buffered data from memory, and clear all configuration definitions.

See Also
EMPTYEMPTYEMPTYEMPTY, OPTIONSOPTIONSOPTIONSOPTIONS

306 Chapter 19 DAPL Commands: RMS

RMS

Define a task that calculates the root-mean-square average of data blocks.

RMS (<in_pipe>, <n>, <out_pipe>)

Parameters
<in_pipe>

Input data pipe.
WORD PIPE | LONG PIPE | FLOAT PIPE | DOUBLE PIPE

<n>
The number of terms in each data block.
WORD CONSTANT | LONG CONSTANT

<out_pipe>
Output data pipe for the RMS values.
WORD PIPE | LONG PIPE | FLOAT PIPE | DOUBLE PIPE

Description
RMSRMSRMSRMS reads blocks of <n> data values from <in_pipe>, calculates the square root of the average of the squares of
the <n> data values, and writes the result to pipe <out_pipe>. RMSRMSRMSRMS is an abbreviation for Root Mean Square.

Example

RMS(P1, 256, P2)

Calculate RMSRMSRMSRMS values of blocks of 256 values from P1 and place the results in P2.

See Also
AVERAGEAVERAGEAVERAGEAVERAGE, VARIANCEVARIANCEVARIANCEVARIANCE, STDDEVSTDDEVSTDDEVSTDDEV

Chapter 19 DAPL Commands: RSUM 307

RSUM

Define a task that computes the running sum (integral) of a data stream.

RSUM (<in_pipe>, <count>, <divisor>, [<window>,] <out_pipe> [, <reset>] >)

Parameters
<in_pipe>

Input data pipe.
WORD PIPE | LONG PIPE | FLOAT PIPE | DOUBLE PIPE

<count>
Decimation interval, the number of input terms for each output.
WORD CONSTANT | LONG CONSTANT

<divisor>
Scaling divisor applied to each output.
WORD CONSTANT | LONG CONSTANT | FLOAT CONSTANT | DOUBLE CONSTANT
WORD VARIABLE | LONG VARIABLE | FLOAT VARIABLE | DOUBLE VARIABLE

<window>
Optional window interval length.
WORD CONSTANT | LONG CONSTANT

<out_pipe>
Output data pipe.
WORD PIPE | LONG PIPE | FLOAT PIPE | DOUBLE PIPE

<reset>
Optional restart interval length.
WORD CONSTANT | LONG CONSTANT

Description
The RSUMRSUMRSUMRSUM command is a general-purpose accumulator command for integration and running sums. It can operate
value-by-value in the manner of RAVERAGERAVERAGERAVERAGERAVERAGE, or block-by-block in the manner of AVERAGEAVERAGEAVERAGEAVERAGE.... It can sum
continuously, or it can restart automatically after a block is completed. It can scale the results by an arbitrary
scaling factor you specify.

Values are received from <in_pipe>. The values are summed into an accumulator. There are three ways to
configure the duration of this summation processing.

1. If both the <window> parameter and the <reset> parameter are omitted, the summation continues
indefinitely. Though the range of the accumulator is large, it is not infinite, and you will need to avoid an
unbounded summation.

2. If the <window> length parameter is specified, input values eventually go out-of-scope and are dropped
from the sum automatically in the manner of the RAVERAGERAVERAGERAVERAGERAVERAGE command. If the number of terms is large,
this can use a lot of buffer storage.

308 Chapter 19 DAPL Commands: RSUM

3. If the <reset> parameter is non-zero, the accumulator value will be reset to zero each time this number
of terms is processed, in the manner of AVERAGEAVERAGEAVERAGEAVERAGE. The <reset> parameter cannot be used when a
<window> interval is specified.

Output values are the values of the running accumulator, divided by the current value of the <divisor>. The
divisor value is arbitrary, but two common choices are:

1. Setting the <divisor> value to 1 leaves the reported values unscaled.

2. Setting the <divisor> value equal to the <reset> parameter value gives “divide by number of
samples” in the manner of the AVERAGEAVERAGEAVERAGEAVERAGE command.

You must specify an output interval in the <count> parameter. The choices are:

1. Equal to 1: report the accumulation after every update.

2. Equal to <window>: report the accumulation once for the span of the summation window with no
overlap.

3. Equal to <reset>: report the accumulation once for each input block.

4. Other value N: apply decimation, skipping N-1 values for each value reported.

The result of applying RSUMRSUMRSUMRSUM to a sample sequence without scaling is equivalent to applying a multiple-step
rectangular rule integral approximation with time step normalized to one unit. Higher order integral
approximations differ slightly at the beginning and end of an integration interval, but otherwise, the accumulator
updates are exactly the same as the rectangular rule. Over a large number of terms, usually the difference does not
matter.

Examples

RSUM (P1, 1, 100.0, P2, 1000)

Read data from pipe P1, compute the sum over 1000 points, reporting the cumulative value divided by 100.0 after
processing each input value. Put the average values into pipe P2.

RSUM (P1, 10, 1.0, 101, P2)
Read data from pipe P1, compute the sum over a 101 term sliding window. There is no scaling of the result. The
output stream is decimated by a factor of 10, yielding one output value for each 10 input values processed.

RSUM (P1, 100, 1.0, P2)
Compute a continuous running accumulation of data from pipe P1, without scaling. Do not reset the accumulator,
or cancel old data using a sliding window. Place results in pipe P2, reporting one value for every 100 processed.
Make sure that the values from pipe P1 do not have a constant bias or the accumulation will diverge toward
infinity.

See Also

AVERAGEAVERAGEAVERAGEAVERAGE, RAVERAGERAVERAGERAVERAGERAVERAGE, FIRFILTERFIRFILTERFIRFILTERFIRFILTER

Chapter 19 DAPL Commands: SAMPLE 309

SAMPLE

Specify the operating mode for an input sampling configuration.

SAMPLE <option>

Parameters
<option>

A keyword.
BURST | CONTINUOUS

Description
The SAMPLESAMPLESAMPLESAMPLE command selects the operating mode for an input sampling configuration. The modes differ primarily
in how sampling activity is restarted after it has been stopped. The available operating modes are:

• CONTINUOUS mode. This is the default mode. When used in combination with a hardware trigger, sampling
starts under control of the trigger; otherwise, sampling starts immediately. Once started, sampling activity
continues indefinitely until the COUNTCOUNTCOUNTCOUNT command is satisfied, all available buffer memory is full, or the
sampling configuration is stopped. After stopping, sampling remains stopped regardless of available
memory or hardware signals.

• BURST mode. The BURST mode is used in combination with the COUNTCOUNTCOUNTCOUNT command and an external hardware
trigger. Sampling activity starts and stops similarly to the CONTINUOUS mode, but after stopping, it resets.
When the triggering occurs again, the sampling activity can restart.

Both sampling modes can work with hardware triggering, as configured by the HTRHTRHTRHTRIGGERIGGERIGGERIGGER command. When used,
the hardware trigger starts the sampling the first time, but only the BURST mode responds to the trigger more than
once. The GATED triggering mode is useful with the CONTINUOUS sampling, allowing sampling activity to be
suspended and resumed without coordinating this with triggered data bursts.

In both sampling modes, the COUNTCOUNTCOUNTCOUNT command can request sampling to stop after collecting the specified number
of samples. Using COUNTCOUNTCOUNTCOUNT is a requirement for the BURST mode, but an option for the CONTINUOUS mode. To get a
burst that is as long as possible before memory capacity is exhausted, allowing the burst to be terminated by a
memory overflow condition, specify an extremely large number on the COUNTCOUNTCOUNTCOUNT command.

Do not configure a SLAVESLAVESLAVESLAVE board for BURST mode input sampling. The BURST mode expects the DAP hardware to
provide a start signal, but that hardware signal is disabled when a master DAP provides the timing. A DAP
configured as MASTERMASTERMASTERMASTER can operate in BURST mode, and the clocking signals it generates will work with the slave
boards configured for CONTINUOUS mode operation. This has the same effect as if all boards were operating in a
common BURST mode.

In previous versions of the DAPL system, this command was called UPDATEUPDATEUPDATEUPDATE, because of similarities to the UPDATEUPDATEUPDATEUPDATE
configuration command for output updating. That name can be used as an alias. The keyword options on the two
commands are similar, except that BURSTCYCLE mode for UPDATEUPDATEUPDATEUPDATE does not have any meaning within sampling
configurations.

310 Chapter 19 DAPL Commands: SAMPLE

Examples

SAMPLE CONTINUOUS

Specify that input sampling operates in the continuous mode. Once stopped, the sampling will not respond again,
even if data storage becomes available or the hardware triggering signal is active.

COUNT 25000
HTRIGGER ONESHOT
SAMPLE BURST

Specify that input sampling operates in the burst mode. The triggering goes active briefly until sampling starts.
Sampling continues until 25000 samples are collected and then stops. This sequence is repeated the next time the
hardware-triggering signal goes active.

See Also
COUNT for inputCOUNT for inputCOUNT for inputCOUNT for input, HTRIGGER for inputHTRIGGER for inputHTRIGGER for inputHTRIGGER for input, UPDATEUPDATEUPDATEUPDATE, , , , SLAVESLAVESLAVESLAVE

Chapter 19 DAPL Commands: SAMPLEHOLD 311

SAMPLEHOLD

Pause DAPL command processing until all sampled data are processed.

SAMPLEHOLD

Description
SAMPLEHOLDSAMPLEHOLDSAMPLEHOLDSAMPLEHOLD pauses DAPL until the currently active input configuration finishes sampling and all input channel
pipes are empty. A sequence of commands

START <input_configuration>
SAMPLEHOLD
PAUSE 500
STOP <input_configuration>

is useful for extracting blocks of data relative to an external hardware trigger. The SAMPLEHOLDSAMPLEHOLDSAMPLEHOLDSAMPLEHOLD command
guarantees that all data are taken for processing, and the final PAUSE allows enough time to finish the last
processing and complete data transfers to the PC.

SAMPLEHOLDSAMPLEHOLDSAMPLEHOLDSAMPLEHOLD can be used only when the active input configuration has a COUNTCOUNTCOUNTCOUNT specification. It should not be
used with UPDATEUPDATEUPDATEUPDATE BURST mode.

See Also
COUNTCOUNTCOUNTCOUNT, STARTSTARTSTARTSTART, STOPSTOPSTOPSTOP, UPDATEUPDATEUPDATEUPDATE

312 Chapter 19 DAPL Commands: SAWTOOTH

SAWTOOTH

Define a task that generates sawtooth wave data.

SAWTOOTH (<amplitude>, <period>, <out_pipe>
[, <mod_type>, <mod_pipe] [, <mod_type>, <mod_pipe])

Parameters
<amplitude>

The absolute magnitude of the waveform peak.
WORD CONSTANT | LONG CONSTANT | FLOAT CONSTANT | DOUBLE CONSTANT

<period>
The number of sample values in each wave cycle.
WORD CONSTANT | LONG CONSTANT | FLOAT CONSTANT | DOUBLE CONSTANT

<out_pipe>
Output pipe for waveform data.
WORD PIPE | LONG PIPE | FLOAT PIPE | DOUBLE PIPE

<mod_type>
An optional modulation selector keyword.
STRING

<mod_pipe>
Pipe for a modulation signal, when a selector keyword is specified.
WORD PIPE | LONG PIPE | FLOAT PIPE | DOUBLE PIPE

Description
SAWTOSAWTOSAWTOSAWTOOTHOTHOTHOTH generates sawtooth wave data and places the data in <out_pipe>. The <period> is the number of
sample values in each wave cycle. The <amplitude> is the absolute magnitude (positive one half the peak to
peak range) of the output wave.

The <amplitude> does not have to match the output data type exactly, but it is restricted to representable values
of the output data type. For example, the integer 100000 would be valid as the amplitude for a float output
signal, but 61472133 would be invalid because it is not representable without rounding.

The cycle length specified by <period> is the number of samples for one complete waveform cycle. For fixed
point output data types, the cycle length must be a fixed point number. For floating point data types, the cycle
length does not need to be an exact integer, which means that it can produce frequencies that are not harmonically
related to the sampling frequency. Aribtrarily long values of <period> are allowed. The most efficient operation
is achieved using fixed point data and a fixed waveform length of 2048 terms or less.

There are two optional modulations. No modulation, one modulation option, or both modulation options can be
specified. Each modulation specification consists of a selector string, followed by a pipe name identifying the
modulation stream. The two modulation options are:

1. Amplitude modulation. Modulation type “AMPLITUDE”.
Values of the modulation signal multiply the corresponding values of the original waveform. For fixed-
point data types, the maximum representable value corresponds to a scaling factor of 1.0, and lower

Chapter 19 DAPL Commands: SAWTOOTH 313

values correspond to proportional fractions. For floating point data types, the modulation values are
arbitrary.

2. Frequency modulation. Modulation type “FREQUENCY”.
Values of the modulation signal act as a multiplier on the waveform frequency. For fixed-point data
types, the maximum representable value corresponds to a scaling factor of 1.0, and lower values
correspond to proportional fractions. For floating point data types, the modulation values are arbitrary but
typically will be in the range 0.0 to 1.0. For example, if the <period> is 500 and the values from the
frequency modulation pipe are all 0.5, the frequency is cut in half and the effect is the same as setting
<period> equal to 1000.

When applying modulation, one modulation value is used for each waveform value generated.

Note: It is not possible to generate both a high-valued and a low-valued sample at the waveform high-to-low
transitions; consequently, sawtooth waveform samples do not sum exactly to zero. If this small bias matters, you
can use a DAPL expression to correct it.

Examples

SAWTOOTH (1000, 100, P2)

Generate a sawtooth wave with values ranging from -1000 to 1000, with a period of 100 samples. Place the
waveform data into pipe P2.

SAWTOOTH (32767, 400, PMOD, “AMPLITUDE”, PAMPL)
Generate a sawtooth wave with output values ranging from –32767 to 32767, and with a cycle length 400. Apply
amplitude modulation, taking the multipliers from pipe PAMPL, and placing modulated waveform data into pipe
PMOD.

See Also
COSINEWCOSINEWCOSINEWCOSINEWAVEAVEAVEAVE, SINEWAVESINEWAVESINEWAVESINEWAVE, TRIANGLETRIANGLETRIANGLETRIANGLE, SQUAREWAVESQUAREWAVESQUAREWAVESQUAREWAVE

314 Chapter 19 DAPL Commands: SDISPLAY

SDISPLAY

Print information about the specified configuration element. Symbols are the names of elements defined in a DAPL
configuration.

SDISPLAY <symbol>[, <symbol>]*

SDISP <symbol>[, <symbol>]*

SD <symbol>[, <symbol>]*

Parameters
<symbol>

Symbol name.

Description
SDISPLAYSDISPLAYSDISPLAYSDISPLAY (symbol display) formats information about individual DAPL symbols and sends the information to the
$SysOut pipe for display. For example, if a processing procedure symbol is given, the contents of the processing
procedure are displayed. If a variable name is specified, the current value of the variable is displayed.

Example

SDISPLAY V1,P1,T1

Display information about symbols V1, P1, and T1.

See Also
DISPLAYDISPLAYDISPLAYDISPLAY, VARIABLESVARIABLESVARIABLESVARIABLES

Chapter 19 DAPL Commands: SEPARATE 315

SEPARATE

Define a task that distributes data consecutively into one or more output pipes.

SEPARATE (<in_pipe>, <out_pipe_0>, , <out_pipe_n-1>)

Parameters
<in_pipe>

Input data pipe.
WORD PIPE | LONG PIPE | FLOAT PIPE | DOUBLE PIPE

<out_pipe_0>, ... , <out_pipe_n-1>
Sequence of output data pipes for separated data.
WORD PIPE | LONG PIPE | FLOAT PIPE | DOUBLE PIPE

Description
SEPARATESEPARATESEPARATESEPARATE reads data from <in_pipe> and places the data consecutively into one or more output pipes. The first
data value is sent to <out_pipe_0>, the second data value is sent to <out_pipe_1>, etc. . SEPARATESEPARATESEPARATESEPARATE is the
inverse of MERGEMERGEMERGEMERGE.

Unlike other DAPL commands that require input and output data types to match, the SEPARATESEPARATESEPARATESEPARATE can distribute the
output values to data pipes of different types, but the data types must match the types of the pipes that were
merged originally to produce the multiplexed stream. Any conversion operations that were applied by the MERGEMERGEMERGEMERGE
operation are reversed by the SEPARATESEPARATESEPARATESEPARATE command to regenerate the original data streams. For most efficient
processing, use data streams of matching type to avoid the conversions.

SEPARATESEPARATESEPARATESEPARATE can be used for reading binary data from a host computer and splitting the binary data stream into
several pipes for processing.

Examples

SEPARATE (P1,P2OUT,P3OUT,P4OUT)

Read data from pipe P1 and place data consecutively into pipes P2OUT, P3OUT, and P4OUT.

SEPARATE ($BinIn,P5WORD,P6FLOAT)
Transfer and demultipliex the data from the binary input com pipe $BinIn to pipes P5WORD and P6FLOAT.

See Also
MERGEMERGEMERGEMERGE, MERGEFMERGEFMERGEFMERGEF, SEPARATEFSEPARATEFSEPARATEFSEPARATEF

316 Chapter 19 DAPL Commands: SEPARATEF

SEPARATEF

Define a task that distributes flagged data.

SEPARATEF (<in_pipe>, <out_pipe_0>, ... , <out_pipe_n-1>)

Parameters
<in_pipe>

Input data pipe.
WORD PIPE | LONG PIPE | FLOAT PIPE | DOUBLE PIPE

<out_pipe_0>, ... , <out_pipe_n-1>
Sequence of output data pipes for separated data.
WORD PIPE | LONG PIPE | FLOAT PIPE | DOUBLE PIPE

Description
SEPARATEFSEPARATEFSEPARATEFSEPARATEF reads flagged data from <in_pipe>, removes the flags, and writes each data value to one of
<out_pipe_0>, … , <out_pipe_n-1> according to the index specified by the flag. Each value transferred is
preceeded by a flag from 0 to n-1, in the natural data type of the input pipe, that identifies the destination pipe.
SEPARATEFSEPARATEFSEPARATEFSEPARATEF is the inverse of MERGEFMERGEFMERGEFMERGEF. . . . Invalid flags cause the SEPARATEFSEPARATEFSEPARATEFSEPARATEF task to terminate with an error.

Unlike most other DAPL processing commands, the input and output pipe data types do not have to match. When
the data type for the input pipe and an output pipe do not match, a conversion operation is applied in a manner that
reverses the conversion applied when the data stream is encoded by a MERGEFMERGEFMERGEFMERGEF task. For most efficient operation,
use input and output data streams of the same type to avoid the conversions.

SEPARATEFSEPARATEFSEPARATEFSEPARATEF can be used for reading binary data that are sent at irregular intervals from a host computer, splitting
the binary data stream into several pipes for processing.

Examples

SEPARATEF (P1,P2,P3,P4)

Read flagged data from pipe P1 and place data into pipes P2, P3, and P4.

SEPARATEF ($BinIn,P5,P6,P7)
Transfer data from the binary input com pipe to pipes P5, P6, and P7.

See Also
MERGEMERGEMERGEMERGE, MERGEFMERGEFMERGEFMERGEF, SEPARATESEPARATESEPARATESEPARATE

Chapter 19 DAPL Commands: SET (individual channel sampling) 317

SET (individual channel sampling)

Associate an individual input channel pipe with an input pin.

SET <channel> <input_pin> [<gain>]

Parameters
<channel>

Input channel pipe identifier.

<input_pin>
Input pin identifier.

<gain>
An integer number that specifies the gain.
WORD CONSTANT

Description
SETSETSETSET associates an individual input channel pipe (IPIPE) with an input pin. Models of Data Acquisition Processor
that sample multiple channels simultaneously use a different version of this command – see the SETSETSETSET command
version described in the next section. Output updating configurations use another version of this command, also in
this chapter.

A <channel> identifier consists of an IPIPE keyword followed by a decimal number. It assigns a name to a data
channel. The IPIPE keyword may be abbreviated to IP. Some examples:

 IP7
 IPIPE482

The range of the channel identifier numbers is restricted by the Data Acquisition Processor model. When the
sampling configuration runs, it will capture samples in order of channel identifier numbers rather than by order of
appearance within the IDEFINE section.

An <input_pin> identifier begins with a identifier character. The pin type identifier characters S, D, and G
represent single-ended, differential, and ground reference analog inputs, respectively. The identifier letter is
followed immediately by a number to identify the hardware pin. One physical pin can be sampled into multiple
input channels and thus appear on more than one SETSETSETSET command.

A separate <gain> number can follow. If <gain> is omitted, it defaults to 1. The allowed gains depend on the
data acquisition processor model — see the hardware comparison listing or your Data Acquisition Processor
hardware manual for information about allowable gains and sampling rate limitations at each gain. The following
are examples of analog channel specifiers and gains:
 S2 40
 D0
 G 10

318 Chapter 19 DAPL Commands: SET (individual channel sampling)

A pin type identifier character B indicates a binary (digital) input source. A number follows immediately to
indicate the digital port. The digital port number is optional, so identifier B means the same thing as B0. The
following are examples of digital <input_pin> identifiers.

 B4
 B

The analog and digital pin numbers are restricted according to the physical signals available on the Data
Acquisition Processor and attached accessory boards. Digital or analog expansion boards increase the number of
available physical digital or analog signals, extending the range of meaningful pin numbers. See the hardware
documentation for each Data Acquisition Processor and accessory board type for more information about the
available pin numbers.

When digital and analog input pins are used in the same input configuration, a digital input is acquired one
sampling period later than a corresponding analog input. See the Data Acquisition Processor hardware
documentation for more information about the timing of input channel sampling.

When an external Counter/Timer Board is connected to the digital input/output port of a Data Acquisition
Processor, two additional <input_pin> names are valid: CTLx and CTy, where ‘x’ is the number 0 or 1 and ‘y’ is
a number from 0 to 9.

 CTL0
 CT0
 CT1 ICLOCK

The sample value produced by a CTLx sampling operation is not meaningful, but the operation freezes the values
of all counters in counter circuit ‘x’ (Counter Timer Load). A CTy sampling operation (Counter Timer read) reads
the value of input counter ‘y’. If a CTy notation has the additional keyword ICLOCK, this indicates that the source
of the counted events should be the timer board oscillator rather than an external signal line. See the
Counter/Timer Board documentation for more information.

A DAPL task can read sampled data using an input channel pipe notation in a processing task definition. A
processing task can read from a single input channel pipe, using the notation IPIPEx or IPx, where x is a number
indicating an input channel similar to the SETSETSETSET command. A processing task can read from several input channel
pipes using an input channel pipe list notation beginning with the name IPIPES, and followed immediately by a
list of input channel pipe numbers enclosed in parentheses. A range of consecutive channel pipe numbers can be
selected by specifying the first channel number, two consecutive periods, and the last channel number. The
identifier IPIPES can be abbreviated to IPIPE or IP. Input channel pipe numbers must appear in ascending
order and must not be repeated. The channel pipe numbers correspond to the channel pipe identifiers assigned on
SETSETSETSET commands. The following is an example of a task parameter list using a mix of single-channel and channel
range specifications to copy ten channels.

 COPY (IP(0..3,10..13,22,23),$BinOut)

A channel list also can use a named word vector defined by a VECTORVECTORVECTORVECTOR command. The following example shows
equivalent notations to access input channels 0 through 4.

VECTOR CLIST WORD = (0, 1, 2, 3, 4)

IPIPES(0,1,2,3,4)
IPIPES CLIST

Chapter 19 DAPL Commands: SET (individual channel sampling) 319

Examples

SET IPIPE0 S4

Input channel pipe 0 contains samples from single-ended input 4, at unity gain.

SET IPIPE1 D5 10
Input channel pipe 1 contains samples from differential input 5, with a gain of 10.

SET IP2 G 40
Input channel pipe 2 contains samples of a ground reference measured with gain of 40.

SET IP3 B0
Input channel pipe 3 contains samples from the binary input port.

See Also
IDEFINEIDEFINEIDEFINEIDEFINE, ODEFINEODEFINEODEFINEODEFINE, variant of SETSETSETSET for multiple channel simultaneous sampling, variant of SETSETSETSET for single channel
output updating

320 Chapter 19 DAPL Commands: SET (multiple channel simultaneous sampling)

SET (multiple channel simultaneous sampling)

Associate grouped input channels with an input sampling pin group.

SET <channel_group> <pin_group>

Parameters
<channel_group>

Input channel pipe identifier.

<pin_group>
Input pin group identifier.

Description
SETSETSETSET associates an input channel group (IPIPE) with an input pin group. Models of Data Acquisition Processors
that sample individual channels use a different kind of SETSETSETSET command – see the SETSETSETSET command version described in
the previous section. Output updating configurations use another version of the SETSETSETSET command, described in the
next section.

The logical data channels to be assigned are specified by the <channel_group> The group of signal pins is
specified by the <pin_group>. If the Data Acquisition Processor hardware provides a programmable ground
reference signal source, this source is the default signal source. Any channel group not assigned to a signal pin
group by a SETSETSETSET command will receive samples from the ground reference source. If the Data Acquisition
Processor hardware does not provide a programmable ground reference signal source, a SETSETSETSET command is required
for each channel group specified by the GROUPSGROUPSGROUPSGROUPS command.

A <channel_group> identifier consists of an IPIPE keyword followed by a restricted form of channel list.
When the sampling configuration runs, it will capture samples in order of channel group identifier numbers rather
than by order of appearance within the IDEFINE section. The channel list is a pair of decimal numbers separated
by two periods and enclosed in parentheses. The IPIPES keyword may be abbreviated to IPIPE or IP. Some
examples:

 IPIPES(4..7) // 4 pin group, channels 4 through 7
 IPIPE(0..3) // 4 pin group, channels 0 through 3
 IP(16..23) // 8 pin group, channels 16 through 23

Only certain numbers are allowed to begin and end the special lists. The range must start with an integer that is a
multiple of the channel group size supported by the Data Acquisition Processor hardware. The range must cover
the exact group size. The range limits for the channel pipe numbers depend on the Data Acquisition Processor
model. When the hardware supports a group size of 4, the following ranges are acceptable:

IP(0..3)
IP(4..7)
IP(8..11)
...

When the hardware supports a group size of 8, the following ranges are acceptable.

Chapter 19 DAPL Commands: SET (multiple channel simultaneous sampling) 321

IP(0..7)
IP(8..15)
IP(16..23)
...

When the sampling configuration runs, it will capture samples in order of channel identifier numbers rather than
by order of appearance within the IDEFINEIDEFINEIDEFINEIDEFINE section.

A group of simultaneously sampled pins is specified by the notation SPGx, where x is an integer. The pin
groupings are predefined. The physical pins covered by each channel group notation depend on the group size as
specified by the GROUPSIZEGROUPSIZEGROUPSIZEGROUPSIZE command, the Data Acquisition Processor model, and attached expansion cards. For
details about connections to signal pins on the DAP analog signal connector and on expansion boards, check the
hardware manual for your Data Acquisition Processor model, or check the “Hardware Differences” summary page
that is included with each DAPL system release.

A DAPL task can read sampled data using an input channel pipe or input channel pipe list notation in a processing
task definition, without regard to the grouping imposed as the data is sampled. To read from a single channel, use
the notation IPIPE<number> or IP<number>. To read multiplexed data from several input channels, use an input
channel pipe list notation that begins with IPIPES, followed immediately by a list of input channel pipe numbers
enclosed in parentheses. The identifier IPIPES can be abbreviated to IPIPE or IP. Input channel pipe numbers
must appear in ascending order and must not be repeated. The channel pipe numbers must be within the channel
pipe ranges assigned on SETSETSETSET commands. A range of channel pipe numbers can be selected by specifying the first
channel number, two consecutive periods, and the last channel number. The following is an example of a task
parameter list using a mix of single-channel and channel range specifications to copy twelve channels.

COPY (IP(0..3,10..15,22,23),$BinOut)

Examples

IDEFINE A
 GROUPS 3
 SET IP(0..3) SPG3
 SET IP(4..7) SPG0
 SET IP(8..11) SPG1
 TIME 100
END
PDEFINE B
 AVERAGE(IP0,100,$BinOut)
END

For a Data Acquisition Processor that has input channel groups of size 4, associate the channel pipes IP0-IP3 to
pins S3, S7, S11, and S15; channel pipes IP4-IP7 to pins S0, S4, S8, and S12; and channel pipes IP8-IP11 to
pins S1, S5, S9, and S13. Process only the data from channel 0 from channel group IP(0..3).

 SET IP(0..7) SPG0
 SET IP(8..15) SPG1

For a Data Acquisition Processor that has input channel groups of size 8, specify two input channel groups, one
connected to pins S0, S2, S4, S6, S8, S10, S12 and S14, and the other to pins S1, S3, S5, S7, S9, S11, S13 and
S15. These signals are recorded in logical channels 0 through 15.

322 Chapter 19 DAPL Commands: SET (multiple channel simultaneous sampling)

See Also
GROUPSGROUPSGROUPSGROUPS, IDEFINEIDEFINEIDEFINEIDEFINE, ODEFINEODEFINEODEFINEODEFINE, variant of SETSETSETSET for individual channel sampling, variant of SETSETSETSET for single channel
output updating, VRANGEVRANGEVRANGEVRANGE

Chapter 19 DAPL Commands: SET (single channel output updating) 323

SET (single channel output updating)

Associate an output channel pipe with a clocked output pin.

SET <channel> <output_pin>

Parameters
<channel>

Output channel pipe specifier.

<output_pin>
Output pin specifier.

Description
SETSETSETSET associates an individual output channel pipe (OPIPE) with a clocked output pin. See the preceding variants of
the SETSETSETSET command for configuring input sampling.

A <channel> identifier consists of an OPIPE keyword followed by a decimal number. It assigns a name to a data
channel. The OPIPE keyword may be abbreviated to OP. Some examples:

 OP7
 OPIPE62

The range of the channel identifier numbers is restricted by the Data Acquisition Processor model. The
<output_pin> specifier can be A0, A1, or B0 without using output expansion boards. Output pins A0 and A1 are
the two analog output ports; B0 is the digital output port. The pin number following B is optional; the notation B
without a number is equivalent to B0. More output pins are available with output expansion.

A task can provide output data by writing to an output channel pipe identified in the task parameter list by the
notation OPIPE, followed immediately by the input channel pipe number. OPIPE can be abbreviated to OP.

To enforce the restriction that data are written to the output channel pipe in a strict multiplexed order, the output
channel list notation is very helpful. An output channel list parameter in a processing task definition consists of the
identifier OPIPES followed immediately by a list of the output channels enclosed in parentheses. The output
channel pipe numbers in the list correspond to the channels assigned on the SETSETSETSET commands. OPIPES can be
abbreviated to OPIPE or OP. A range of channel pipe numbers is selected by specifying the first channel number,
two consecutive periods, and the last channel number. An example of a task that writes four channels for clocked
output updates:

 MERGE (P0,P1,P2,P3, OPIPE(0..3))

Example

ODEFINE D 2
 SET OPIPE0 A1
 SET OPIPE1 B
 TIME 50
END

324 Chapter 19 DAPL Commands: SET (single channel output updating)

Define output updating with one analog output to analog output pin A1 and one digital output to binary port 0.

See Also
ODEFINEODEFINEODEFINEODEFINE

Chapter 19 DAPL Commands: SINEWAVE 325

SINEWAVE

Define a task that generates sine wave data.

SINEWAVE (<amplitude>, <period>, <out_pipe>
[, <mod_type>, <mod_pipe] [, <mod_type>, <mod_pipe])

Parameters
<amplitude>

The absolute magnitude of the waveform peak.
WORD CONSTANT | LONG CONSTANT | FLOAT CONSTANT | DOUBLE CONSTANT

<period>
The number of sample values in each wave cycle.
WORD CONSTANT | LONG CONSTANT | FLOAT CONSTANT | DOUBLE CONSTANT

<out_pipe>
Output pipe for waveform data.
WORD PIPE | LONG PIPE | FLOAT PIPE | DOUBLE PIPE

<mod_type>
An optional modulation selector keyword.
STRING

<mod_pipe>
Pipe for a modulation signal, when a selector keyword is specified.
WORD PIPE | LONG PIPE | FLOAT PIPE | DOUBLE PIPE

Description
SINEWAVESINEWAVESINEWAVESINEWAVE generates sine wave data and places the data in <out_pipe>. The <period> is the number of sample
values in each wave cycle. The <amplitude> is the absolute magnitude (positive one half the peak to peak range)
of the output wave.

The <amplitude> does not have to match the output data type exactly, but it is restricted to representable values
of the output data type. For example, the integer 100000 would be valid as the amplitude for a float output
signal, but 61472133 would be invalid because it is not representable without rounding.

The cycle length specified by <period> is the number of samples for one complete waveform cycle. For fixed
point output data types, the cycle length must be a fixed point number. For floating point data types, the cycle
length does not need to be an exact integer, which means that it can produce frequencies that are not harmonically
related to the sampling frequency. Aribtrarily long values of <period> are allowed. The most efficient operation
is achieved using fixed point data and a fixed waveform length of 2048 terms or less.

Note: The SINEWAVESINEWAVESINEWAVESINEWAVE is identical to COSINEWAVECOSINEWAVECOSINEWAVECOSINEWAVE except for the phase of the signal.

There are two optional modulations. No modulation, one modulation option, or both modulation options can be
specified. Each modulation specification consists of a selector string, followed by a pipe name identifying the
modulation stream. The two modulation options are:

326 Chapter 19 DAPL Commands: SINEWAVE

1. Amplitude modulation. Modulation type “AMPLITUDE”.
Values of the modulation signal multiply the corresponding values of the original waveform. For fixed-
point data types, the maximum representable value corresponds to a scaling factor of 1.0, and lower
values correspond to proportional fractions. For floating point data types, the modulation values are
arbitrary.

2. Frequency modulation. Modulation type “FREQUENCY”.
Values of the modulation signal act as a multiplier on the waveform frequency. For fixed-point data
types, the maximum representable value corresponds to a scaling factor of 1.0, and lower values
correspond to proportional fractions. For floating point data types, the modulation values are arbitrary but
typically will be in the range 0.0 to 1.0. For example, if the <period> is 500 and the values from the
frequency modulation pipe are all 0.5, the frequency is cut in half and the effect is the same as setting
<period> equal to 1000.

When applying modulation, one modulation value is used for each waveform value generated.

Examples

SINEWAVE (1000, 100, P2)

Generate a sine wave with values ranging from -1000 to 1000, with a period of 100 samples. Place the waveform
data into pipe P2.

SINEWAVE (32767, 400, PMOD, “AMPLITUDE”, PAMPL)
Generate a sine wave with output values ranging from –32767 to 32767, and with a cycle length 400. Apply
amplitude modulation, taking the multipliers from pipe PAMPL, and placing modulated waveform data into pipe
PMOD.

See Also
COSINEWAVECOSINEWAVECOSINEWAVECOSINEWAVE, SAWTOOTHSAWTOOTHSAWTOOTHSAWTOOTH, TRIANGLETRIANGLETRIANGLETRIANGLE, SQUAREWAVESQUAREWAVESQUAREWAVESQUAREWAVE

Chapter 19 DAPL Commands: SKIP 327

SKIP

Define a task that alternately copies and skips data.

SKIP (<in_pipe>, <initial_skip>, <take_cnt>, <skip_cnt>
<out_pipe>)

Parameters
<in_pipe>

Input data pipe.
WORD PIPE | LONG PIPE | FLOAT PIPE | DOUBLE PIPE

<initial_skip>
A value that specifies the initial number of values to skip.
WORD CONSTANT | LONG CONSTANT

<take_cnt>
A value that specifies the number of values to move.
WORD CONSTANT | LONG CONSTANT

<skip_cnt>
A value that specifies the number of values to skip.
WORD CONSTANT | LONG CONSTANT

<out_pipe>
Output data pipe.
WORD PIPE | LONG PIPE | FLOAT PIPE | DOUBLE PIPE

Description
SKIPSKIPSKIPSKIP moves selected data from <in_pipe> to <out_pipe> and provides flexible options for skipping blocks of
data. After initially doing a one-time skip of <initial_skip> values, SKIPSKIPSKIPSKIP alternately moves <take_cnt>
values to <out_pipe> then ignores <skip_cnt> values. The data types of the input and output pipes must match.

Examples

SKIP (IP0, 0, 1000, 2000, P1)

Transfer 1000 values to P1, ignore a block of 2000 values, and repeat.

SKIP (IP0, 100, 500, 100, P1)
Ignore 100 values from IP0, transfer 500 values to P1, then repeat.

SKIP (P1, 50, 1, 0, P2)
Ignore first 50 values from P1, then continuously transfer remaining data.

328 Chapter 19 DAPL Commands: SLAVE

SLAVE

Configure an input or output configuration’s clock source to be another Data Acquisition Processor.

SLAVE

Description
The SLAVESLAVESLAVESLAVE command configures an input or output configuration’s clock source to be another Data Acquisition
Processor. The SLAVESLAVESLAVESLAVE command is used in synchronized multiple Data Acquisition Processor systems; a slave
Data Acquisition Processor synchronizes input sampling or output updates to a clock signal from a master Data
Acquisition Processor.

If SLAVESLAVESLAVESLAVE is used in an output configuration, the OUTPUTWAITOUTPUTWAITOUTPUTWAITOUTPUTWAIT count must be satisfied before the master output
configuration is started.

Note: UPDATEUPDATEUPDATEUPDATE BURST mode is not available with SLAVESLAVESLAVESLAVE.

See Also
CLOCK for inputCLOCK for inputCLOCK for inputCLOCK for input, CLOCK for outputCLOCK for outputCLOCK for outputCLOCK for output, HTRIGGER for inputHTRIGGER for inputHTRIGGER for inputHTRIGGER for input, HTRIGGER for outputHTRIGGER for outputHTRIGGER for outputHTRIGGER for output, MASTERMASTERMASTERMASTER

Chapter 19 DAPL Commands: SQRT 329

SQRT

Define a task that computes square roots of data.

SQRT (<in_pipe>, <out_pipe>)

Parameters
<in_pipe>

Input data pipe.
WORD PIPE | LONG PIPE | FLOAT PIPE | DOUBLE PIPE

<out_pipe>
Output pipe for square root data.
WORD PIPE | LONG PIPE | FLOAT PIPE | DOUBLE PIPE

Description
SQRTSQRTSQRTSQRT computes square roots of data from <in_pipe> and places the results in <out_pipe>. If an input data
value is negative, SQRTSQRTSQRTSQRT sends the number zero to the output pipe. For fixed point data types, the returned value is
the greatest integer lower bound on the square root value. The data types of the input and output pipes must match.

Example

SQRT (P1, P2)

Read data from pipe P1, compute square roots, and place the results in pipe P2.

See Also
CMAGCMAGCMAGCMAG, RMSRMSRMSRMS

330 Chapter 19 DAPL Commands: SQUAREWAVE

SQUAREWAVE

Define a task that generates square wave data.

SQUAREWAVE (<amplitude>, <period>, <out_pipe>
[, <mod_type>, <mod_pipe] [, <mod_type>, <mod_pipe])

Parameters
<amplitude>

The absolute magnitude of the waveform peak.
WORD CONSTANT | LONG CONSTANT | FLOAT CONSTANT | DOUBLE CONSTANT

<period>
The number of sample values in each wave cycle.
WORD CONSTANT | LONG CONSTANT | FLOAT CONSTANT | DOUBLE CONSTANT

<out_pipe>
Output pipe for waveform data.
WORD PIPE | LONG PIPE | FLOAT PIPE | DOUBLE PIPE

<mod_type>
An optional modulation selector keyword.
STRING

<mod_pipe>
Pipe for a modulation signal, when a selector keyword is specified.
WORD PIPE | LONG PIPE | FLOAT PIPE | DOUBLE PIPE

Description
SQUAREWAVESQUAREWAVESQUAREWAVESQUAREWAVE generates square wave data and places the data in <out_pipe>. The <period> is the number of
sample values in each wave cycle. The <amplitude> is the absolute magnitude (positive one half the peak to
peak range) of the output wave.

The <amplitude> does not have to match the output data type exactly, but it is restricted to representable values
of the output data type. For example, the integer 100000 would be valid as the amplitude for a float output
signal, but 61472133 would be invalid because it is not representable without rounding.

The cycle length specified by <period> is the number of samples for one complete waveform cycle. For fixed
point output data types, the cycle length must be a fixed point number. For floating point data types, the cycle
length does not need to be an exact integer, which means that it can produce frequencies that are not harmonically
related to the sampling frequency. Aribtrarily long values of <period> are allowed. The most efficient operation
is achieved using fixed point data and a fixed waveform length of 2048 terms or less.

There are two optional modulations. No modulation, one modulation option, or both modulation options can be
specified. Each modulation specification consists of a selector string, followed by a pipe name identifying the
modulation stream. The two modulation options are:

1. Amplitude modulation. Modulation type “AMPLITUDE”.
Values of the modulation signal multiply the corresponding values of the original waveform. For fixed-
point data types, the maximum representable value corresponds to a scaling factor of 1.0, and lower

Chapter 19 DAPL Commands: SQUAREWAVE 331

values correspond to proportional fractions. For floating point data types, the modulation values are
arbitrary.

2. Frequency modulation. Modulation type “FREQUENCY”.
Values of the modulation signal act as a multiplier on the waveform frequency. For fixed-point data
types, the maximum representable value corresponds to a scaling factor of 1.0, and lower values
correspond to proportional fractions. For floating point data types, the modulation values are arbitrary but
typically will be in the range 0.0 to 1.0. For example, if the <period> is 500 and the values from the
frequency modulation pipe are all 0.5, the frequency is cut in half and the effect is the same as setting
<period> equal to 1000.

When applying modulation, one modulation value is used for each waveform value generated.

Note: If you need exact waveform symmetry, you must specify a cycle length that is an even number, so that the
number of samples on the positive half cycle can equal the number of samples on the negative half-cycle.

Examples

SQUAREWAVE (1000, 100, P2)

Generate a square wave with values ranging from -1000 to 1000, with a period of 100 samples. Place the
waveform data into pipe P2.

SQUAREWAVE (32767, 400, PMOD, “AMPLITUDE”, PAMPL)
Generate a square wave with output values ranging from –32767 to 32767, and with a cycle length 400. Apply
amplitude modulation, taking the multipliers from pipe PAMPL, and placing modulated waveform data into pipe
PMOD.

See Also
COSINEWAVECOSINEWAVECOSINEWAVECOSINEWAVE, SAWTOOTHSAWTOOTHSAWTOOTHSAWTOOTH, SINEWAVESINEWAVESINEWAVESINEWAVE, TRIANGLETRIANGLETRIANGLETRIANGLE

332 Chapter 19 DAPL Commands: START

START

Activate input configurations, processing procedures, and output configurations.

START [<name> [,<name>]*]

STA [<name> [,<name>]*]

Parameters
<name>

Name of an input, output, or processing configuration.

Description
STARTSTARTSTARTSTART activates input configurations, processing procedures, and output configurations. The processes started by
one STARTSTARTSTARTSTART command are sometimes called a start group. Tasks within a start group can read copies of data
produced by tasks within that group.

STARTSTARTSTARTSTART can be used with no parameters to start all defined configurations. Only one input configuration and one
output configuration should be defined when using STARTSTARTSTARTSTART without parameters. When more than one input
configuration or output configuration is defined, the STARTSTARTSTARTSTART command with no parameters will generate a warning
message and start the first configuration defined.

Activation of an input configuration initializes the Data Acquisition Processor hardware and software to allow
sampling, as defined by the input configuration’s sampling configuration. Once the hardware begins sampling the
input pins, sampling continues until the sample count reaches the input configuration’s COUNTCOUNTCOUNTCOUNT specification or
until a STOPSTOPSTOPSTOP command is issued. Only one input configuration can be active at a given time.

Activation of a processing procedure starts each of the tasks in the processing procedure. Any number of
processing procedures can be active at one time. Starting a processing procedure does not affect the Data
Acquisition Processor input sampling or output update status.

Activation of an output configuration initializes the Data Acquisition Processor hardware and software to allow
output updating, as defined by the output configuration. Once the hardware begins updating the output pins,
updating continues until the output sample count reaches the output configuration’s COUNTCOUNTCOUNTCOUNT specification or until a
STOPSTOPSTOPSTOP command is issued. Only one output configuration can be active at a given time.

When starting an input or output configuration which specifies an external clock or trigger, sampling might not
begin immediately. See the hardware documentation for details about external clocks and triggers.

When stopping and restarting an input or output configuration, it is best to use the STOPSTOPSTOPSTOP and STARTSTARTSTARTSTART commands
with no parameters to perform a complete stop and restart. It is possible, however, to stop an input or output
configuration while other processing continues. In this case, it also is necessary to stop the tasks that read from or
write to the input or output configuration channel pipes. To restart the input or output configuration, start the input
or output configuration and then start the input or output tasks.

Chapter 19 DAPL Commands: START 333

Examples

START
START A
START A,B

See Also
RESETRESETRESETRESET, STOPSTOPSTOPSTOP

334 Chapter 19 DAPL Commands: STATISTICS

STATISTICS

Report processor utilization information about the system and running tasks.

STATISTICS ON | [DISPLAY] [TASKING] [PIPES] [DISPLAYALL] | OFF

STAT ON | [DISPLAY] [TASKING] [PIPES] [DISPLAYALL] | OFF

Description
The STATISTICSSTATISTICSSTATISTICSSTATISTICS command displays information about processor and capacity utilization of the system and
processing tasks. The report displayed by STATISTICSSTATISTICSSTATISTICSSTATISTICS might look something like the following:

 Task Time Used
 (in mS)

RESCUER (5) 10.57
DAPL_TSK (2) 0.36
HOST_TSK (2) 0.08
INF_TSK (2) 0.00
CFG_TSK (2) 0.00
RANDOM (2) 1002.24
RANDOM (2) 967.57
$DAPLEXPR (2) 2285.14
DACOUT (2) 153.27
IDL_TSK (-1) 0.00

total time elapsed: 5000.72 mS
system idle/overhead: 0.00/581.49 mS (0.00%/11.63%)

The report lists the tasks, shows their running priority, and the amount of time that the tasks consumed while
running within the monitored time interval. Summary CPU loading statistics are also shown.

To initiate collection of the measurements, issue the STATISTICSSTATISTICSSTATISTICSSTATISTICS command with the ON command line option.
After STATISTICSSTATISTICSSTATISTICSSTATISTICS collection begins, pause for a few seconds, then use a STATISTICSSTATISTICSSTATISTICSSTATISTICS DISPLAY command, or
simply STATISTICSSTATISTICSSTATISTICSSTATISTICS with no command line options, to see the collected information. STATISTICSSTATISTICSSTATISTICSSTATISTICS can be
displayed multiple times, but there is some interaction between the measured CPU utilization and the utilization of
the STATISTICSSTATISTICSSTATISTICSSTATISTICS command itself, so the first measurement will be the most accurate. When the statistics should
no longer be collected, issue the STATISTICSSTATISTICSSTATISTICSSTATISTICS command with the OFF command line option.

It is common to send the STATISTICSSTATISTICSSTATISTICSSTATISTICS command to the DAPL system interactively. To save typing, the
STATISTICSSTATISTICSSTATISTICSSTATISTICS command can be abbreviated to STATSTATSTATSTAT.

The STATISTICSSTATISTICSSTATISTICSSTATISTICS command has some additional command line options that can sometimes be useful.

• STAT CLEAR
Use this to reset the accumulated statistics to zero at any time.

• STAT PIPES
Use this instead of DISPLAY to get a report with extra information about the maximum amount of

Chapter 19 DAPL Commands: STATISTICS 335

buffered data accumulated in pipes. This is particularly useful for studying real-time applications, because
backlogs of data in pipes indicate delays in delivering real-time response.

• STAT TASKING
Use this at any time to add an extended listing of tasking information, showing information about delays
between opportunities for tasks to execute. This can be important for estimating bounds on guaranteed
real-time response to events.

• STAT DISPLAYALL or STAT ALL
Adds both the PIPES and TASKING reports as described above.

Example

STATISTICS ON
STATISTICS CLEAR
PAUSE 10000
STATISTICS DISPLAY
STATISTICS OFF

Report how the processing tasks in the current configuration used CPU resources during a 10-second execution
interval.

336 Chapter 19 DAPL Commands: STATUS

STATUS

Display information about the current status of the system.

STATUS

Description
STATUSSTATUSSTATUSSTATUS displays information about the current status of the system — memory usage, active system tasks,
interrupt status variables, etc. In most cases, this information is of interest to system implementers only. The
STATUSSTATUSSTATUSSTATUS command should not be used while an input or output configuration is active.

Chapter 19 DAPL Commands: STDDEV 337

STDDEV

Define a task that computes the sample standard deviation for a group of samples.

STDDEV (<in_pipe>, <count>, <out_pipe>)

Parameters
<in_pipe>

Input data pipe.
WORD PIPE | LONG PIPE | FLOAT PIPE | DOUBLE PIPE

<count>
The number of samples in the processed block.
WORD CONSTANT | LONG CONSTANT

<out_pipe>
Output pipe for the standard deviation data.
WORD PIPE | LONG PIPE | FLOAT PIPE | DOUBLE PIPE

Description
STDDEVSTDDEVSTDDEVSTDDEV computes one value of standard deviation for each block of <count> samples received from
<in_pipe>. Results are sent to <out_pipe>. The data types of <in_pipe> and <out_pipe> must match.

The standard deviation of a sample block is computed as: sum the squared deviations from expected value, divide
by <count>, and take the square root. If you are using STDDEVSTDDEVSTDDEVSTDDEV to estimate parameters of a normal distribution, the
result will be slightly biased. You can correct the bias by pre-computing the correction factor
sqrt(<count>/<count>-1) and applying this using a DAPL expression.

Note: STDDEVSTDDEVSTDDEVSTDDEV is equivalent to VARIANCEVARIANCEVARIANCEVARIANCE combined with a square root operation.

Examples

STDDEV (IPIPE0, 1000, PSTD)

Analyze groups of 1000 values from input channel pipe IPIPE0 and send the results to pipe PSTD.

STDDEV (P2, 40, P3)
P3ADJUST = P3 * 1.0127

Analyze groups of 40 values from pipe P2 to estimate the variance of the distribution from which the sample
values were obtained. Apply a bias correction factor for a block size 40, adjusting the original results in pipe P3 to
obtain corrected parameter estimate results in pipe P3ADJUST.

See Also

AVERAGEAVERAGEAVERAGEAVERAGE, RMSRMSRMSRMS, VARIANCEVARIANCEVARIANCEVARIANCE

338 Chapter 19 DAPL Commands: STOP

STOP

Stop input sampling, processing, and output updating configurations.

STOP [<name> [,<name>]*]

STO [<name> [,<name>]*]

Parameters
<name>

Name of input, output, or processing configuration.

Description
The STOPSTOPSTOPSTOP command with no parameters stops input sampling and output updating, stops all tasks, empties all
pipes, and clears all triggers. The Data Acquisition Processor stops producing output and flushes all data.

The STOPSTOPSTOPSTOP command with a list of names stops each input configuration, output configuration, or processing
procedure named.

Stopping an input configuration results only in termination of input pin sampling. Processing of buffered data in
input channel pipes and in pipes continues.

Stopping a processing procedure stops all the tasks in the processing procedure.

Stopping an output configuration stops the updating of the analog or digital outputs. Processing of buffered data in
pipes continues.

Note: Only the variant of STOPSTOPSTOPSTOP without parameters flushes buffered data. STOPSTOPSTOPSTOP without parameters is the
recommended way to stop an application.

Examples

STOP A
STOP A,B
STOP

See Also
RESETRESETRESETRESET, STARTSTARTSTARTSTART

Chapter 19 DAPL Commands: STRING 339

STRING

Define a string.

STRING <name> = “<text>“

STR <name> = “<text>“

Parameters
<name>

String name.

<text>
String text.

Description
STRINGSTRINGSTRINGSTRING defines a string. Strings can be used by the FORMATFORMATFORMATFORMAT command to include alphanumeric information on
printed lines. Enclose the text in double quote characters. To include a quote character in the content of a string,
use two quote characters in sequence.

A STRINGSTRINGSTRINGSTRING also is useful for passing configuration information to custom command tasks.

Example

STRING HEADING = ¨MAXIMUM AT PEAK:¨

340 Chapter 19 DAPL Commands: TAND

TAND

Define a task that calculates a logical ‘and’ of trigger assertions.

TAND (<in_trigger_1>, ... , <in_trigger_n>, <out_trigger> [, <delta>])

Parameters
<in_trigger_1>

First input trigger.
TRIGGER

<in_trigger_n>
Last input trigger.
TRIGGER

<out_trigger>
Output trigger.
TRIGGER

<delta>
Tolerance specification for almost simultaneous events.
WORD CONSTANT

Description
TANDTANDTANDTAND is used to detect simultaneous or near-simultaneous events. TANDTANDTANDTAND calculates a logical ‘and’ of trigger
assertions. Each time that triggers <in_trigger_1>, … , <in_trigger_n> are all asserted within <delta>
sample times, <out_trigger> is asserted. When this occurs, <out_trigger> is asserted at the earliest of the
times in <in_trigger_1>, … , <in_trigger_n>, and one trigger assertion is removed from each of
<in_trigger_1>, … , <in_trigger_n>. <delta> is an optional parameter; its default value is zero. When
<delta> is zero, the timestamps from <in_trigger_1>, … , <in_trigger_n> must match exactly to generate
an output event.

Any other trigger events that do not satisfy the conditions for sending an assertion to <out_trigger> are
removed from <in_trigger_1>, … ,<in_trigger_n> and ignored.

Example

TAND (T1, T2, T3, T_OUT, 25)

Assert T_OUT each time T1, T2, and T3 all are asserted within an interval of 25 sample times.

See Also
TORTORTORTOR

Chapter 19 DAPL Commands: TCOLLATE 341

TCOLLATE

Define a task that combines trigger assertions and produces a combined event stream.

TCOLLATE (<trig_0>, ..., [<trig_n-1>,] <trig_out>)

Parameters
<trig_0>

First source of events.
TRIGGER

<trig_n-1>
Subsequent sources of events.
TRIGGER

<trig_out>
Output trigger for the combined event stream.
TRIGGER

Description
The TCOLLATETCOLLATETCOLLATETCOLLATE command combines trigger assertions from n triggers <trig_0> through <trig_n-1> in
sequence, where n is in the range 2 to 16. It produces a combined event stream in trigger <trig_out>.
Timestamps from the n input triggers, <trig_0> through <trig_n-1>, must be based on the same data rates.

The input triggers <trig_0> through <trig_n-1> are processed in sequence. When an event appears in
<trig_0>, it is copied to <trig_out>. Next, trigger <trig_1> is processed, discarding any events prior to the
event timestamp taken from trigger <trig_0>. When a suitable event appears, it is copied to <trig_out>.
Processing continues in this manner for each input trigger in the list. When the list is exhausted, processing begins
again at the start of the list. This processing sequence ensures that the events posted in trigger <trig_out> are in
a strictly increasing time sequence.

A common application for the TCOLLATETCOLLATETCOLLATETCOLLATE command is enforcing a strict alternating sequence of trigger events
from two independent triggering tasks. These events might be interpreted, for example, as ON events alternating
with OFF events. This kind of alternating sequence is required by the TOGGWTTOGGWTTOGGWTTOGGWT command. Extremely general
triggering conditions can be defined for the TOGGWTTOGGWTTOGGWTTOGGWT command using a TCOLLATETCOLLATETCOLLATETCOLLATE command in combination with
any two trigger generating commands.

Examples

LIMIT(P1,INSIDE,24000,32767,T1,INSIDE,1,32767)
LIMIT(P1,INSIDE,-32768,0,T2,INSIDE, -32768,0)
TCOLLATE(T1, T2, T3)

Alternate trigger events from trigger T1, generated by a LIMITLIMITLIMITLIMIT task that detects values 24000 or greater in pipe P1,
with trigger events from trigger T2, generated by another LIMITLIMITLIMITLIMIT task that detects negative values in pipe P1. Place
the alternating trigger sequence in trigger T3. For this particular example, which requires only simple region tests,
the TOGGLETOGGLETOGGLETOGGLE command is an alternative.

342 Chapter 19 DAPL Commands: TCOLLATE

CUSTOM(P1,T1)
TGEN(1000,T2)
TCOLLATE(T1,T2,T3)

Guarantee that at most one assertion event generated by custom command CUSTOM is retained each 1000 samples.
Alternate the events generated by CUSTOM in trigger T1 with artificial events generated each 1000 samples by the
TGENTGENTGENTGEN command in trigger T2, to produce the alternating sequence in trigger T3.

See Also
TANDTANDTANDTAND, TORTORTORTOR, TOGGLETOGGLETOGGLETOGGLE, TOGGWTTOGGWTTOGGWTTOGGWT

Chapter 19 DAPL Commands: TFUNCTION1 343

TFUNCTION1

Define a task that calculates transfer functions from Fourier transform data.

TFUNCTION1 (<p1>, <p2>, <p3>, <p4>, <scale>,
 <pmag>, <pang> [, <limit1>, <limit2>])

Parameters
<p1>

A pipe which contains the real part of the Fourier transform of the input to a system under test.
WORD PIPE | LONG PIPE | FLOAT PIPE | DOUBLE PIPE

<p2>
A pipe which contains the imaginary part of the Fourier transform of the input to a system under test.
WORD PIPE | LONG PIPE | FLOAT PIPE | DOUBLE PIPE

<p3>
A pipe which contains the real part of the Fourier transform of the output of the system under test.
WORD PIPE | LONG PIPE | FLOAT PIPE | DOUBLE PIPE

<p4>
A pipe which contains the imaginary part of the Fourier transform of the output of the system under test.
WORD PIPE | LONG PIPE | FLOAT PIPE | DOUBLE PIPE

<pmag>
Output pipe for amplitude data.
WORD PIPE | LONG PIPE | FLOAT PIPE | DOUBLE PIPE

<pang>
Output pipe for phase data.
WORD PIPE | LONG PIPE | FLOAT PIPE | DOUBLE PIPE

<scale>
A scale factor for decibel output.
WORD CONSTANT | LONG CONSTANT | FLOAT CONSTANT | DOUBLE CONSTANT

<limit1>
An optional word constant for suppressing computations with very small inputs.
WORD CONSTANT | LONG CONSTANT | FLOAT CONSTANT | DOUBLE CONSTANT

<limit2>
An optional word constant for suppressing computations with very small outputs.
WORD CONSTANT | LONG CONSTANT | FLOAT CONSTANT | DOUBLE CONSTANT

Description
TFUNCTION1TFUNCTION1TFUNCTION1TFUNCTION1 calculates frequency response transfer functions from Fourier transform data. The transfer function
of a system is defined as the ratio of the output of the system to the input of the system, calculated in the frequency
domain. The transfer function can be calculated either from Fourier transforms or from crosspower spectrum and
autopower spectrum. TFUNCTION1TFUNCTION1TFUNCTION1TFUNCTION1 uses the transforms directly and is more efficient when data sets are clean and

344 Chapter 19 DAPL Commands: TFUNCTION1

accurate. If signals are noisy, it is better to compute the crosspower and autopower spectra, which can be averaged
to reduce noise, and then apply TFUNCTIOTFUNCTIOTFUNCTIOTFUNCTION2N2N2N2 to calculate the transfer function.

<p1> and <p2> are pipes that contain the real and imaginary components of the Fourier transform of the input
signal for a system under test. <p3> and <p4> are pipes that contain the real and imaginary components of the
Fourier transform of the output of the system under test. TFUNCTION1TFUNCTION1TFUNCTION1TFUNCTION1 calculates the ratios of corresponding terms
in the Fourier transforms, then converts to amplitude and phase. The amplitude is converted to decibels and written
to pipe <pmag>. <scale> is a scale factor for the decibel output that can be useful for preserving precision when
using fixed point data types. For more details about representing decibel values in the various data types, see the
description of the DECIBELDECIBELDECIBELDECIBEL command. The phase is represented in radians and written to pipe <pang>. For more
details about representing phase angles in the various data types, see the description of the POLARPOLARPOLARPOLAR command. All
pipes and constants must be of the same data type.

The transfer function output is meaningful only where the inputs and outputs are not too small; otherwise, the
results are dominated by noise and very erratic. <limit1> and <limit2> are optional constraints to fix the
transfer function result for frequencies with insufficient signal energy. If the amplitude of the input level is less
than <limit1>, or the output level is less than <limit2>, <pmag>, and<pang> are set to zero.

See Also
DECIBELDECIBELDECIBELDECIBEL, FFTFFTFFTFFT, POLPOLPOLPOLARARARAR, TFUNCTION2TFUNCTION2TFUNCTION2TFUNCTION2

Chapter 19 DAPL Commands: TFUNCTION2 345

TFUNCTION2

Define a task that calculates transfer functions from cross power spectrum data and autopower spectrum data.

TFUNCTION2 (<p1>, <p2>, <p3>, <scale>, <pmag>, <pang>
[, <limit1>, <limit2>])

Parameters
<p1>

A pipe which contains the real parts of the autopower spectrum of the input to a system under test.
LONG PIPE

<p2>
A pipe which contains the real parts of the crosspower spectrum of the output of the system under test.
LONG PIPE

<p3>
A pipe which contains the imaginary parts of the crosspower spectrum of the output of the system under test.
LONG PIPE

<scale>
A scale factor for decibel output.
WORD CONSTANT

<pmag>
Output pipe for amplitude data.
WORD PIPE

<pang>
Output pipe for phase data.
WORD PIPE

<limit1>
An optional word constant for suppressing computations with very small inputs.
WORD CONSTANT

<limit2>
An optional word constant for suppressing computations with very small outputs.
WORD CONSTANT

Description
TFTFTFTFUNCTION2UNCTION2UNCTION2UNCTION2 calculates transfer functions from crosspower spectrum data and autopower spectrum data. The
transfer function of a system is defined as the ratio of the output of the system to the input of the system,
calculated in the frequency domain. The transfer function can be calculated either from Fourier transforms or from
crosspower spectrum and autopower spectrum. TFUNCTION1TFUNCTION1TFUNCTION1TFUNCTION1 uses the transforms directly and is more efficient
when data sets are clean and accurate. If signals are noisy, it is better to compute the crosspower and autopower
spectra, which can be averaged to reduce noise, and then apply TFUNCTION2TFUNCTION2TFUNCTION2TFUNCTION2 to calculate the transfer gains.

The CROSSPOWERCROSSPOWERCROSSPOWERCROSSPOWER command produces useful results in LONG, FLOAT, and DOUBLE data types, so the WORD data
type is not supported. All pipes and constants must be of the same data type.

346 Chapter 19 DAPL Commands: TFUNCTION2

<p1> and <p2> are pipes that contain the real and imaginary components of the Fourier transform of the input
signal for a system under test. <p3> and <p4> are pipes that contain the real and imaginary components of the
Fourier transform of the output of the system under test. TFUNCTION1TFUNCTION1TFUNCTION1TFUNCTION1 calculates the ratios of corresponding terms
in the Fourier transforms, then converts to amplitude and phase. The amplitude is converted to decibels and written
to pipe <pmag>. <scale> is a scale factor for the decibel output that can be useful for preserving precision when
using fixed point data types. For more details about representing decibel values in the various data types, see the
description of the DECIBELDECIBELDECIBELDECIBEL command. The phase is represented in radians and written to pipe <pang>. For more
details about representing phase angles in the various data types, see the description of the POLARPOLARPOLARPOLAR command. All
pipes and constants must be of the same data type.

The transfer function output is meaningful only where the inputs and outputs are not too small; otherwise, the
results are dominated by noise and very erratic. <limit1> and <limit2> are optional constraints to fix the
transfer function result for frequencies with insufficient signal energy. If the amplitude of the input level is less
than <limit1>, or the output level is less than <limit2>, <pmag>, and<pang> are set to zero.

See Also
CROSSPOWERCROSSPOWERCROSSPOWERCROSSPOWER, DECIBELDECIBELDECIBELDECIBEL, POLARPOLARPOLARPOLAR, TFUNCTION1TFUNCTION1TFUNCTION1TFUNCTION1

Chapter 19 DAPL Commands: TGEN 347

TGEN

Define a task that generates periodic trigger assertions.

TGEN (<n>, <trigger>)

Parameters
<n>

The sample count change for each trigger assertion.
WORD CONSTANT

<trigger>
Output stream of artificial trigger events.
TRIGGER

Description
TGENTGENTGENTGEN generates periodic trigger assertions in <trigger>, first skipping <n>-1 counts, and then asserting an event
at the next location. This cycle is repeated for each subsequent trigger assertion, so the count for each posted event
increases by <n>. Suppose for example that <n> equals 1000. At initial start-up, the 999 sample counts numbered
0 through 998 will be skipped, and the first event will be posted at sample number 999. The next event will be
posted at sample 1999, the next event at sample 2999, and so forth.

TGENTGENTGENTGEN is useful during test and development stages of a project, when a system is not fully functional. The artificial
events allow other parts of the processing to be tested, before a signal is available that can provide actual
triggering events.

TGENTGENTGENTGEN is unusual because it does not analyze a data stream to select triggering locations. This means that the events
it generates could be independent of the data rate in any particular stream, but does not mean independence from
processing rate deadlocks when used with multiple streams. For example, a task using the events to process data at
a very slow rate can force the TGENTGENTGENTGEN task to add new events slowly, so that it fails to keep pace with a task
processing data at fast data rates. To avoid problems, apply the events to data streams operating at a consistent
rate.

Example

TGEN (100, T)

Place trigger assertions into trigger T corresponding to sample counts 99, 199, 299, 399, … .

See Also
TANDTANDTANDTAND, TORTORTORTOR

348 Chapter 19 DAPL Commands: THERMO

THERMO

Define a task that converts thermocouple voltages to temperatures.

THERMO (<in_pipe>, <type>, <scale1>, <scale2>, [<offset>,] <out_pipe> [, <cjc>])

Parameters
<in_pipe>

Input thermocouple junction voltage data.
WORD PIPE

<type>
An integer code or name string indicating the thermocouple type.
WORD CONSTANT

<scale1>
First term of scaling factor.
WORD CONSTANT

<scale2>
Second term of scaling factor.
WORD CONSTANT

<offset>
Constant offset adjustment.
WORD VARIABLE

<out_pipe>
Output data pipe.
WORD PIPE

<cjc>
Optional variable which contains the temperature of the cold junction, in units of tenths of a degree.
WORD VARIABLE

Chapter 19 DAPL Commands: THERMO 349

Description
THERMOTHERMOTHERMOTHERMO performs linearization of thermocouple voltage data from <in_pipe> and places the corresponding
temperature data in <out_pipe>. <type> is an integer from 0 to 9, indicating type E, J, K, R, S, T, N, U, L, or B
thermocouple respectively. Alternatively, you can specify the thermocouple type as a one-letter string enclosed in
double-quotation marks. See the table below for more details on thermocouple types. Input values are multiplied
by the factor <scale1>/<scale2> before linearization. The result of this multiplication is interpreted as a voltage
in tens of microvolts. The scale factor terms should be adjusted according to the gain on the input signal.

If the <cjc> parameter is specified, THERMOTHERMOTHERMOTHERMO also performs cold junction compensation. <cjc> is a WORD variable
that contains the temperature of the cold junction, in units of tenths of a degree Celsius. Separate measurements
can be used to establish the value of this variable. An additional table lookup is used to determine a voltage
correction to apply to the input data.

The optional <offset> parameter is a word variable that is subtracted from each data value read by THERMOTHERMOTHERMOTHERMO This
parameter allows the easy removal of a DC ground offset from the input data.

The output values are expressed in units of tenths of a degree Celsius. The temperature can be converted to
Fahrenheit using the following DAPL expression:

PF = PC*9/5 + 320

The Applications Manual provides several examples of thermocouple processing using the THERMOTHERMOTHERMOTHERMO command.

The following table specifies the temperature ranges of the linearization data for each thermocouple type
supported by the THERMOTHERMOTHERMOTHERMO command. The Error column describes the contribution of the thermocouple
linearization to the total measurement error.

Thermocouple Type Code Range (Deg C) Error* (± Deg C)
ANSI type E (IEC 584) 0 “E” -270 to 1000 0.4

ANSI type J (IEC 584) 1 “J” -200 to 1200 0.3

ANSI type K (IEC 584) 2 “K” -270 to 1370 0.4

ANSI type R (IEC 584) 3 “R” -50 to 1760 0.4

ANSI type S (IEC 584) 4 “S” -50 to 1750 0.3

ANSI type T (IEC 584) 5 “T” -270 to 400 0.3

ANSI proposed type N 6 “N” -260 to 1300 0.3

Type U (DIN 43710) 7 “U” -200 to 600 0.2

Type L (DIN 43710) 8 “L” -200 to 900 0.3

Type B (IEC 584) 9 “B” 0 to 1750 0.6

* Maximum contribution to overall error by THERMOTHERMOTHERMOTHERMO.

The conversions provided by the THERMOTHERMOTHERMOTHERMO command span the full standard temperature range for the thermocouple
devices. There is a substantial variation among individual devices, and the standard correction curves are typically

350 Chapter 19 DAPL Commands: THERMO

in error of 1 to 2 degrees Celsius for any individual thermocouple device. Much higher conversion accuracy is
possible by calibrating an individual device and using the INTERPINTERPINTERPINTERP command to perform the linearization.

Example

THERMO (P1, “K”, 12500, 32767, P2)

Thermocouple potential is measured at a gain of 40 on a –5 to +5 volt range, so the maximum positive digitizer
range 32767 represents +1/8 of a volt, which is 12500 steps in units of 10 microvolts. Read input data from pipe
P1, multiply the data by 12500/32767, perform type K thermocouple linearization, and place the results in pipe P2.

See Also
INTERPINTERPINTERPINTERP

Chapter 19 DAPL Commands: TIME 351

TIME

Set the time intervals at which successive inputs are sampled or successive outputs are updated.

TIME <interval>

Parameters
<interval>

The time in microseconds.

Description
TIMETIMETIMETIME sets the time intervals at which successive inputs are sampled or outputs are updated. The time is specified in
microsecond units. For Data Acquisition Processor models with multiplexed input sampling or output updating,
and with M channels in the input or output channel pipe, each channel is sampled or updated every
<interval>*M microseconds. For Data Acquisition Processor models with simultaneous input sampling, and
with M channel groups defined in the input or output channel pipe, each channel group is sampled every
<interval>*M microseconds.

Several hardware-related restrictions limit the range of input and output rates the the TIMETIMETIMETIME command can allow.

• analog conversion rate limits for converter devices
• digital propagation and settling time limits for digital devices
• timing resolution supportable by timing oscillators
• timing durations supportable by digital interval counters
• CPU processing capacity limits for managing hardware devices

These restrictions, dependent on the hardware features of your specific Data Acquisition Processor, will determine
maximum sampling and updating rates that can be supported. For specific information about your particular Data
Acquisition Processor model, go to the HWDIF.HTM file. From your software install CD, look for the
"Documentation | PDF" link in the introductory screen, and select the "DAPL 3000 Hardware Dependencies" item
to browse the file.

Even though the hardware dependencies document states that conversions can be performed at certain rates, full
accuracy of the conversion is not always guaranteed at these maximum rates. Some of the conditions that affect the
maximum sampling and updating rates:

• Quality of signal cables. Cable type, length and termination are critical to the success of high speed sampling
and updating. Cabling should be tested to verify proper operation at high speeds.

• Slew rate limiting. If an input or output amplifier switches between widely differing input or output voltage
levels, the conversion might not settle to full accuracy during a sampling interval. See the Data Acquisition
Processor hardware manual for information about slew rate limitations in various configurations.

• High gain. The bandwidth of a feedback amplifier reduces at high gains. When a SETSETSETSET command assigns a gain
higher than 1.0, the Data Acquisition Processor programmable gain amplifier requires extra time to settle to full
accuracy. See the Data Acquisition Processor hardware documentation for more information.

If your configuration uses expansion boards, these boards can have their own isolation amplifiers, conversion
clocking, latching logic, etc., with these devices having their own timing restrictions. The DAPL system might

352 Chapter 19 DAPL Commands: TIME

allow timing intervals for which the expansion boards cannot produce accurate results. Be careful to observe the
timing restrictions described in the hardware manuals for each board.

Data Acquisition Processor models place different restrictions on fractional microsecond timings. DAPL allows
three decimal places of precision in the time specification. Time specifications that are multiples of 0.1
microseconds are compatible with all current models. The “increment” column of the table shows the time
increments that are allowed for each Data Acquisition Processor model. <interval> must be a multiple of the
time increment. If <interval> cannot be realized exactly, a warning is displayed and the actual sampling time is
rounded down to the nearest valid multiple.

Even though TIMETIMETIMETIME restricts the maximum sampling time, the effective sampling interval can be made longer by
using SKIPSKIPSKIPSKIP or AVERAGEAVERAGEAVERAGEAVERAGE commands. The effective output update time can be made longer by using the
REPLICATEREPLICATEREPLICATEREPLICATE command.

Some models of Data Acquisition Processors allow digital sampling at shorter intervals than analog sampling.
When there is a mix of analog and digital input signals, these Data Acquisition Processor models allow
<interval> to be set to a value shorter than the minimum allowed for analog signals, provided that the combined
time intervals for each analog channel and its preceding digital channels is at least as long as the minimum analog
interval.

The combined digital and analog intervals cannot be

less than the minimum analog interval.

A configuration of this kind that mixes digital and analog signals, and has a sampling time interval shorter than the
minimum allowed for analog signals alone, is called “fast sampling.” To ensure that there are enough digital
samples in the sequence when starting each pass through the channel list, a fast configuration must always begin
with an appropriate number of digital samples.

The following is an example of fast input sampling for a Data Acquisition Processor with a minimum analog input
TIMETIMETIMETIME of 1.3 µs, a minimum digital sampling time of 0.6 µs, and a time interval resolution of 0.1 µs. The
configuration has one digital channel and one analog channel. If the TIMETIMETIMETIME statement specifies <interval> to be
0.6 µs, sampling in the following manner is incorrect:

• the digital channel is sampled at 0.6 µs (okay)
• the analog channel is sampled at 1.2 µs (error, less than minimum)
• this cycle repeats

One solution to this problem is to sample the digital channel an extra time.

• the digital channel is sampled at 0.6 µs (discarded)

Chapter 19 DAPL Commands: TIME 353

• the digital channel is sampled at 1.2 µs (okay)
• the analog channel is sampled at 1.8 µs (okay)
• this cycle repeats

However, the only thing gained by discarding a sample is a time delay. It is also possible to achieve a time delay
by adjusting the time interval. Selecting the next allowed sampling interval of 0.7 µs:

• the digital channel is sampled at 0.7 µs (okay)
• the analog channel is sampled at 1.4 µs (okay)
• this cycle repeats

Because this configuration has a net faster sampling rate on the analog signal, it is probably the preferred
configuration. The DAPL commands for this example would look like the following:

 IDEF A
 CHANNELS 2
 SET IP0 B
 SET IP1 S0
 TIME 0.7
 END

Fast input sampling configurations are possible because input hardware devices allow sampling and conversions to
be started while digital sampling is done in parallel. Output updating does not have a similar feature, so output
conversions must start and end within the <interval> specified by the TIMETIMETIMETIME command. The output configuration
accepts the minimum digital output time for both analog and digital updates and does not check whether analog
update intervals are long enough. If they are not, output voltages can be latched before they completely settle to
the correct value. In some applications, when all multiplexed output signals are close to the same level and
changes from one update to the next are small, less settling time is required for output voltage transitions to settle.
These applications might be able to track the desired output signal with sufficient accuracy at higher rates. Test
carefully to determine actual accuracies achieved.

Examples

TIME 5000

Set sampling speed to 5 milliseconds per sample.

TIME 2.5
Set update speed to 2.5 microseconds per update.

354 Chapter 19 DAPL Commands: TOGGLE

TOGGLE

Define a task that tests for sequences of ON events alternating with OFF events.

TOGGLE (<on_pipe>, <on_region> [, <off_pipe>], <off_region>, <trig>)

Parameters
<on_pipe>

Input data pipe for ON events.
WORD PIPE

<on_region>
Testing region for ON events.
REGION

<off_pipe>
Input data pipe for OFF events.
WORD PIPE

<off_region>
Testing region for OFF events.
REGION

<trig>
Output trigger for alternating trigger assertions.
TRIGGER

Description
TOGGLETOGGLETOGGLETOGGLE tests for sequences of ON events alternating with OFF events, placing alternating trigger assertions into
<trig> . For detecting ON events, data from the <on_pipe> are tested using the <on_region>, in a manner
similar to the LIMITLIMITLIMITLIMIT command. The first event is always an ON event. Once an ON event is detected, data from the
<off_pipe> are tested using the <off_region>, again similar to the LIMITLIMITLIMITLIMIT command. If the same data stream
is to be tested both for the ON and the OFF conditions, the <off_pipe> parameter is omitted. When both
<on_pipe> and <off_pipe> are specified, data from only one of the streams is tested at any time; while testing
for ON conditions, data from the <off_pipe> are skipped, and while testing for OFF conditions, data from the
<on_pipe> are skipped. These conditions enforce a strict synchronization and alternation between ON and OFF
events.

The strict alternation cannot be enforced when trigger modes are used which suppress trigger events or artificially
introduce events. For this reason, the NATIVE operating mode is recommended for the trigger. TOGGLETOGGLETOGGLETOGGLE will not run
if the trigger has a nonzero HOLDOFF property or operates in the AUTO mode.

The TOGGLETOGGLETOGGLETOGGLE command usually is used in conjunction with the TOGGWTTOGGWTTOGGWTTOGGWT command, which extracts variable-length
blocks of data from a data stream in response to ON/OFF events.

Examples

TOGGLE(P1, INSIDE, 1000, 10000, OUTSIDE, 0, 32767, TT)

Chapter 19 DAPL Commands: TOGGLE 355

Test data from pipe P1 for an “on-event” value inside the region 1000 to 10000, and when one is detected, assert
an event in trigger TT. Then, test the same source pipe P1 for an “off-event” negative value, and when one is
detected, assert another event in trigger TT. Repeat the cycle.

TOGGLE(P1, INSIDE, 1000, 10000, P2, OUTSIDE, 0, 32767, TT)
Test samples from pipe P1 for “on-event” values inside the region 1000 to 10000, and test samples from a separate
pipe P2 for “off-event” negative values.

See Also
LIMITLIMITLIMITLIMIT, TOGGWTTOGGWTTOGGWTTOGGWT

356 Chapter 19 DAPL Commands: TOGGWT

TOGGWT

Collect data between alternating ON and OFF trigger events.

TOGGWT (<source>, <toggle>, <dest> [, <size>] [, <format> [, <tags>]])

<format> = STREAM | <block specifier>

<block specifier> = BLOCKS [SPANNED | SINGLE] [STAMPED]

Parameters
<source>

Input data pipe.
WORD PIPE

<toggle>
The trigger that that signals “ON” and “OFF” events.
TRIGGER

<dest>
Output data pipe.
WORD PIPE

<size>
A value that specifies the maximum data block size.
WORD CONSTANT

<tags>
Specifies an optional separate pipe for identification information.
LONG PIPE

Description
TOGGWTTOGGWTTOGGWTTOGGWT acts somewhat like the WAITWAITWAITWAIT command. It interprets a stream of events from trigger <toggle> as
alternating ON and OFF events. The first event is always an ON event. When an ON event is received, the TOGGWTTOGGWTTOGGWTTOGGWT
command begins to accept data from the <source> pipe, copying data to the <dest> pipe. When an OFF event is
received at trigger <toggle>, the TOGGWTTOGGWTTOGGWTTOGGWT command stops accepting data from the <source> pipe. Data which
do not occur between ON and OFF events are discarded.

Data formatting options are specified by optional parameters. The <size> parameter specifies a maximum block
size. If no <size> parameter is specified, the DAPL system supplies a default. The <format> parameter selects
formatting options according to keywords in a format specifier string. The <tags> parameter specifies an optional
separate pipe for identification information.

The syntax of the format option string is:

Chapter 19 DAPL Commands: TOGGWT 357

“ <format string> “

format string = STREAM | <block specifier>

block specifier =
BLOCKS [SPANNED | SINGLE] [STAMPED]

Some examples of valid format specifiers:

“FORMAT = BLOCKS”
“FORMAT = STREAM”
“FORMAT = BLOCKS SINGLE STAMPED”
“FORMAT = BLOCKS SPANNED”

When a format string is specified, one of the following two options must be selected:

• STREAM. The default. The selected data is placed into the <dest> pipe without any identifier marks. The
optional <tags> parameter is not allowed with this option. This format is probably the preferred one for isolated
or single events. The data are sent in an arbitrary number of blocks of maximum size <size> until all data from
the ON event to the OFF event are transferred.

• BLOCKS. Data are sent in blocks and length tags are placed into the identification information. If the
<tags> parameter is specified, the tag information is placed into that separate pipe. Otherwise, the tag
information is merged with the data stream and precedes each data block.

When the BLOCKS format is specified, there are two further choices.

• SINGLE. Specifies that the data are to be sent in a single block of up to length <size>. The actual size is

indicated in the tag information. No data are transmitted until the block is full or an OFF event terminates the
block at a smaller size. If there are more than <size> samples between the ON and the OFF event, any samples
that will not fit in the block are ignored. It is recommended that <size> be specified, rather than using the
default.

• SPANNED. The default when BLOCKS is specified. The data are sent in blocks no larger than <size>. Each
block is tagged, in addition to a length tag, with a CONTINUED/COMPLETED tag. If marked CONTINUED , the
block covers only part of the remaining data, and another block containing a non-zero number of additional
values is expected. If marked COMPLETED , the block contains all of the remaining samples up to the OFF event.
For example, if data are sent as 2 blocks, the first block will be marked CONTINUED and the next will be marked
COMPLETED. The numeric representation of the CONTINUED/COMPLETED tags is given below.

Both of the BLOCKS options can have an additional STAMPED option. When this is selected, a 32-bit timestamp
corresponding to the sample timestamp of the ON event is placed after the other tag information.

Note: The timestamps also can be obtained by using the TSTAMPTSTAMPTSTAMPTSTAMP command and then the SKIPSKIPSKIPSKIP command to select
only ON events.

The format of the tag data is as follows:

358 Chapter 19 DAPL Commands: TOGGWT

length 16 bits
continuation 16 bits (COMPLETED = 0, CONTINUED = 1)
timestamp 32 bits (sent with STAMPED option only)

The continuation field is only meaningful for SPANNED blocks. With SINGLE blocks, the continuation field is
always zero. Note that when tag information is merged with long data or placed into a separate <tags> pipe, the
16-bit length and continuation fields are merged into a single 32-bit value, with the length in the low-order 16 bits
and the continuation in the high-order 16 bits. Also note that when tag information is merged with 16-bit data, the
32-bit timestamp will appear as a sequence of two words, with the low-order 16 bits first, followed by the high-
order 16 bits. The timestamp field is not sent unless the STAMPED option is selected.

Chapter 19 DAPL Commands: TOGGWT 359

Examples

TOGGWT(P1, TT, P2)

Take samples from pipe P1, according to events in trigger TT, starting at an ON event, and stopping at an OFF
event. Place the data in the P2 pipe. Use the default formatting option, STREAM, which generates no identification
information.

TOGGWT(P1, TT, P2, 2000, “FORMAT=BLOCKS SINGLE”,TAGS)
PCOUNT(TAGS,XXX)

Copy single blocks of up to 2000 items from pipe P1 to pipe P2, beginning at an ON event from trigger TT, and
ending when the block is full or when an OFF event arrives from TT. Discard the tag information, by placing it into
a separate TAGS pipe and using another command to empty the pipe.

TOGGWT(P1, TT, $BinOut, 512, “FORMAT=BLOCKS SPANNED”)
Copy data from pipe P1 to communication pipe $BinOut beginning at an ON event from trigger TT and continuing
until an OFF event. The spanned format is used, sending the data in blocks no larger than 512 items, and merging
tag information ahead of each data block in the $BinOut data stream.

See Also
TSTAMPTSTAMPTSTAMPTSTAMP, SKIPSKIPSKIPSKIP, WAITWAITWAITWAIT, TOGGLETOGGLETOGGLETOGGLE

360 Chapter 19 DAPL Commands: TOR

TOR

Define a task that calculates a logical ‘or’ of trigger assertions.

TOR (<in_trigger_1>, ... , <in_trigger_n>, <out_trigger>)

Parameters
<in_trigger_1>

An event source.
TRIGGER

<in_trigger_n>
Additional event sources.
TRIGGER

<out_trigger>
Combined new event stream.
TRIGGER

Description
TORTORTORTOR calculates a logical ‘or’ of trigger assertions. <out_trigger> is asserted each time at least one of
<in_trigger_1>, … , <in_trigger_n> is asserted.

TORTORTORTOR typically is used when a trigger event can occur for more than one reason or can be detected on a number of
separate data channels.

Example

TOR (T1, T2, T_OUT)

Assert T_OUT each time T1 or T2 is asserted.

See Also
TANDTANDTANDTAND

Chapter 19 DAPL Commands: TRIANGLE 361

TRIANGLE

Define a task that generates triangle wave data.

TRIANGLE (<amplitude>, <period>, <out_pipe>
[, <mod_type>, <mod_pipe] [, <mod_type>, <mod_pipe])

Parameters
<amplitude>

The absolute magnitude of the waveform peak.
WORD CONSTANT | LONG CONSTANT | FLOAT CONSTANT | DOUBLE CONSTANT

<period>
The number of sample values in each wave cycle.
WORD CONSTANT | LONG CONSTANT | FLOAT CONSTANT | DOUBLE CONSTANT

<out_pipe>
Output pipe for waveform data.
WORD PIPE | LONG PIPE | FLOAT PIPE | DOUBLE PIPE

<mod_type>
An optional modulation selector keyword.
STRING

<mod_pipe>
Pipe for a modulation signal, when a selector keyword is specified.
WORD PIPE | LONG PIPE | FLOAT PIPE | DOUBLE PIPE

Description
TRIANGLETRIANGLETRIANGLETRIANGLE generates triangle wave data and places the data in <out_pipe>. The <period> is the number of
sample values in each wave cycle. The <amplitude> is the absolute magnitude (positive one half the peak to
peak range) of the output wave.

The <amplitude> does not have to match the output data type exactly, but it is restricted to representable values
of the output data type. For example, the integer 100000 would be valid as the amplitude for a float output
signal, but 61472133 would be invalid because it is not representable without rounding.

The cycle length specified by <period> is the number of samples for one complete waveform cycle. For fixed
point output data types, the cycle length must be a fixed point number. For floating point data types, the cycle
length does not need to be an exact integer, which means that it can produce frequencies that are not harmonically
related to the sampling frequency. Aribtrarily long values of <period> are allowed. The most efficient operation
is achieved using fixed point data and a fixed waveform length of 2048 terms or less.

There are two optional modulations. No modulation, one modulation option, or both modulation options can be
specified. Each modulation specification consists of a selector string, followed by a pipe name identifying the
modulation stream. The two modulation options are:

1. Amplitude modulation. Modulation type “AMPLITUDE”.
Values of the modulation signal multiply the corresponding values of the original waveform. For fixed-
point data types, the maximum representable value corresponds to a scaling factor of 1.0, and lower

362 Chapter 19 DAPL Commands: TRIANGLE

values correspond to proportional fractions. For floating point data types, the modulation values are
arbitrary.

2. Frequency modulation. Modulation type “FREQUENCY”.
Values of the modulation signal act as a multiplier on the waveform frequency. For fixed-point data
types, the maximum representable value corresponds to a scaling factor of 1.0, and lower values
correspond to proportional fractions. For floating point data types, the modulation values are arbitrary but
typically will be in the range 0.0 to 1.0. For example, if the <period> is 500 and the values from the
frequency modulation pipe are all 0.5, the frequency is cut in half and the effect is the same as setting
<period> equal to 1000.

When applying modulation, one modulation value is used for each waveform value generated.

Note: If you need exact waveform symmetry, you must specify a cycle length that is an even number, so that the
waveform peaks all occur at exact sample locations.

Example

TRIANGLE (1000, 100, P2)

Generate a triangle wave with values ranging from -1000 to 1000, with a period of 100 samples. Place the
waveform data into pipe P2.

TRIANGLE (32767, 400, PMOD, “AMPLITUDE”, PAMPL)
Generate a triangle wave with output values ranging from –32767 to 32767, and with a cycle length 400. Apply
amplitude modulation, taking the multipliers from pipe PAMPL, and placing modulated waveform data into pipe
PMOD.

See Also
COSINEWAVECOSINEWAVECOSINEWAVECOSINEWAVE, SAWTOOTHSAWTOOTHSAWTOOTHSAWTOOTH, SINEWAVESINEWAVESINEWAVESINEWAVE, SQAREWAVESQAREWAVESQAREWAVESQAREWAVE

Chapter 19 DAPL Commands: TRIGARM 363

TRIGARM

Define a task that allows a task or PC application to asynchronously arm or disarm a software trigger.

TRIGARM (<pipe>, <trig>)

Parameters
<pipe>

Input data pipe.
WORD PIPE | LONG PIPE

<trig>
Trigger of interest.
TRIGGER

Description
The TRIGARMTRIGARMTRIGARMTRIGARM command allows a task or PC application to asynchronously arm or disarm software trigger <trig>
by setting the trigger property GATE=ARMED or GATE=DISARMED, respectively. All trigger operating modes except
the default (NATIVE) mode are affected. A zero value received from <pipe> disarms the trigger; a non-zero value
arms the trigger. While disarmed, the trigger will not respond to new assertions and will not generate artificial
events. See the TRIGGERSTRIGGERSTRIGGERSTRIGGERS command for information about operating modes and trigger properties.

A typical application of the TRIGARMTRIGARMTRIGARMTRIGARM command is one-shot data collection. The trigger is defined with the MANUAL
operating mode and an initial GATE=DISARMED property. When the DAPL processing procedure is started, trigger
events are not recognized because the trigger is disarmed. Later, when the application places a nonzero value into
<pipe>, the TRIGARMTRIGARMTRIGARMTRIGARM command changes the GATE property of <trig> to ARMED . Operating in MANUAL mode,
trigger <trig>, responds to the next asserted event, and then resets the GATE=DISARMED property.

The system command EDITEDITEDITEDIT is an alternate means of arming and disarming a trigger.

Example

TRIGARM(P1,T1)

Set the GATE property of trigger T1 to DISARMED when a value of 0 is received from pipe P1. Set the GATE
property of trigger T1 to ARMED when a non-zero value is received from pipe P1.

See Also
TRIGGERSTRIGGERSTRIGGERSTRIGGERS, HTRIGGERHTRIGGERHTRIGGERHTRIGGER, EDITEDITEDITEDIT, WAITWAITWAITWAIT

364 Chapter 19 DAPL Commands: TRIGGERS

TRIGGERS

Define one or more software triggers.

TRIGGERS <t_def> [, <t_def>]*

TRIGGER <t_def> [, <t_def>]*

TRIG <t_def> [, <t_def>]*

<t_def> = <name> [MODE=<mode> [<property>]*]

<property> =
HOLDOFF=<hold> | STARTUP=<start> | CYCLE=<cycle> | GATE=<arm>

Parameters
<name>

Trigger symbol name.

<mode>
A keyword selecting the trigger operating mode. Must be one of:
NATIVE | NORMAL | MANUAL | AUTO | DEFERRED.

<arm>
A keyword for enabling or disabling trigger activity. Must be:
ARMED | DISARMED.

<cycle>
Automatic triggering cycle for AUTO mode.
LONG CONSTANT

<hold>
Holdoff interval for all modes except NATIVE.
LONG CONSTANT

<start>
Initial startup interval for all modes except NATIVE.
LONG CONSTANT

Description
TRIGGERSTRIGGERSTRIGGERSTRIGGERS defines one or more software triggers. A <name> parameter constructs a software trigger and assigns it
a symbol name. The <name> symbol can then be used as a parameter for processing tasks. All other parameters
are optional, and most applications can use the defaults. If none of the optional parameters are specified, the
trigger will operate in the NATIVE mode, as defined below.

The trigger begins processing its incoming stream of event notifications when all reader and writer tasks for the
trigger are started. Operating modes modify the way that incoming trigger events are processed, accepting some
requests to assert the trigger and suppressing others.

Chapter 19 DAPL Commands: TRIGGERS 365

• NATIVE. The NATIVE mode applies no filtering actions, and the trigger does not use any of the trigger properties.
This deprecated notation means exactly the same thing as the NORMAL mode using default property values.

• NORMAL. The NORMAL mode uses the HOLDOFF, STARTUP, and GATE properties. This mode simulates the normal
mode operation of an oscilloscope, in which a display sweep must be completed before responding to another
trigger event. For data streams processed in blocks, this avoids redundant events applied to one data block.

• DEFERRED. This mode is the same as NORMAL mode, except that events occurring inside the HOLDOFF interval
are delayed until after the HOLDOFF interval, guaranteeing that you always capture enough data following an
event.

• AUTO. This mode is similar to NORMAL mode, except that artificial events are inserted as specified by the
<cycle> property when no events occur otherwise. This simulates the AUTO triggering mode of an oscilloscope.
The CYCLE property value <cycle> cannot be smaller than the HOLDOFF property value <hold>.

• MANUAL. This mode is for one-shot events. The HOLDOFF, STARTUP, and GATE properties are recognized. The
trigger responds to only one event, and then it sets its GATE property to DISARMED. It can be rearmed using an
EDITEDITEDITEDIT or TRIGARM TRIGARM TRIGARM TRIGARM command.

The operating modes use the following trigger properties. These properties are not available for the NATIVE mode.

• GATE. This property optionally can be assigned the value ARMED or DISARMED. The trigger does not accept new
assertions when disarmed. The setting can be changed later using an EDITEDITEDITEDIT or TRIGARMTRIGARMTRIGARMTRIGARM command. Default is
ARMED.

• HOLDOFF. After an event is posted, the trigger will not accept any new assertion events until <hold> samples
later, ignoring any events that occurs in the <hold>-1 samples before that time. The default is no holdoff
interval, so an event can be posted at the next sample.

• STARTUP. This property specifies an interval similar to HOLDOFF, except that an event cannot occur until
<start> number of samples. For example, if the STARTUP interval is 100, the 99 samples numbered 0 through
98 are skipped, and the trigger can start responding to events at the 100th sample, number 99.

• CYCLE. This property is used by the AUTO mode to determine the number of samples between artificially-
generated events. For example, if the CYCLE length is 100, an artificial event can occur once per 100 samples
when there are no other events posted.

Note: A trigger uses 32-bit sample counts as its “timestamp” for identifying the location of assertions. If an
application generates more than 2^32-1 data values (4294967296 samples), trigger assertion counts wrap around to
zero.

Examples

TRIGGERS T2, T3

Define two triggers, T2 and T3, using default mode and properties.

TRIGGERS TA MODE=AUTO CYCLE=5000 HOLDOFF=100

366 Chapter 19 DAPL Commands: TRIGGERS

Trigger TA operates in the AUTO mode, and artificial events are inserted once per 2000 samples when there are no
other events. There is a holdoff interval of 100 samples, so after any actual or artificial event, no new events are
accepted until the 100th sample following.

TRIGGERS TM MODE=MANUAL STARTUP=2000 GATE=ARMED
Trigger TM operates in the MANUAL mode. At startup time, no event can be recognized until the 2000th sample. At
the end of the startup interval, the trigger can respond to the first event it receives. Upon receiving that event, it
changes its GATE property from ARMED to DISARMED.

TRIGGERS TN MODE=NORMAL STARTUP=5000 HOLDOFF=100 \
 GATE=DISARMED

Trigger TN starts DISARMED. Two things must occur before the trigger TN responds to incoming events: 1) the
GATE property must be changed to ARMED and 2) the startup interval of 5000 samples must be completed. After
both of these conditions are satisfied, the trigger continues operating in NORMAL mode.

See Also
LIMITLIMITLIMITLIMIT, WAITWAITWAITWAIT, TRIGARMTRIGARMTRIGARMTRIGARM, HTRIGGER for inputHTRIGGER for inputHTRIGGER for inputHTRIGGER for input, HTRIGGER for outputHTRIGGER for outputHTRIGGER for outputHTRIGGER for output

Chapter 19 DAPL Commands: TRIGRECV 367

TRIGRECV

Define a task that recovers transferred triggering information.

TRIGRECV (<in_pipe>, <out_trigger>)

Parameters
<in_pipe>

Input data pipe for encoded triggering information.
LONG PIPE

<out_trigger>
Output trigger.
TRIGGER

Description
TRIGRECVTRIGRECVTRIGRECVTRIGRECV recovers encoded software triggering information received from another task through a user-defined or
communication data pipe <in_pipe>. The triggering information is placed into trigger <out_trigger>.

The data pipe must contain a long data type. An examples of a compatible user-defined data pipe is the following:

PIPE PXTRIG LONG

See Chapter 16 for information on how to set up the communication pipes.

A typical application for TRIGRECVTRIGRECVTRIGRECVTRIGRECV is high speed data acquisition on a slaved Data Acquisition Processor board,
where high-speed trigger detection processing is performed by a separate Data Acquisition Processor, with
triggering information transmitted using the TRIGSENDTRIGSENDTRIGSENDTRIGSEND command.

Example

TRIGRECV(XF3, T3)

Encoded triggering information is received through LONG communication pipe XF3 and reconstructed in trigger
T3.

See Also
PIPESPIPESPIPESPIPES, TRIGSENDTRIGSENDTRIGSENDTRIGSEND

368 Chapter 19 DAPL Commands: TRIGSCALE

TRIGSCALE

Define a task that modifies a stream of trigger events.

TRIGSCALE (<trig_in>, <offset>, <mul>, <div>, <trig_out>)

Parameters
<trig_in>

Input trigger.
TRIGGER

<offset>
A value that specifies the offset adjustment.
WORD CONSTANT

<mul>
A value that specifies the channel multiplication scaling.
WORD CONSTANT

<div>
A value that specifies the data reduction scaling.
WORD CONSTANT

<trig_out>
Output trigger.
TRIGGER

Description
The TRIGSCALETRIGSCALETRIGSCALETRIGSCALE command modifies a stream of trigger events received from trigger <trig_in> and places the
results in trigger <trig_out>. The modifications to the trigger values adjust for data rates, channel groupings,
and time (phase) offsets.

The TRIGSCALETRIGSCALETRIGSCALETRIGSCALE command applies three operations to the values taken from the <trig_in> trigger: an offset
adjustment specified by the <offset> parameter, a data reduction scaling specified by the <div> parameter, and
a channel multiplication scaling specified by the <mul> parameter.

timestamp = ((old_timestamp + <offset>) / <div>) * <mul>

The <offset> operation corresponds to a time-shift, in terms of a number of samples in the input sequence. A
positive value indicates a delay, and a negative value indicates an advance. A negative value has somewhat the
same effect as pre-triggering samples when using the WAITWAITWAITWAIT command. The first sample, when the Data Acquisition
Processor starts, is always sample number zero, so any event advanced ahead of sample zero is removed. If there is
no time shift, set <offset> to zero.

The <div> operation accounts for data rate reduction due to processing. For example, suppose that an event is
detected in a stream of raw data samples, and this data is also averaged in blocks of 100 samples, producing one
averaged value for every 100 raw input values. To locate the average value that corresponds to the block

Chapter 19 DAPL Commands: TRIGSCALE 369

containing the detected event, specify a value of 100 for the <div> parameter. The value of <div> must always be
positive, so if there is no data reduction, specify the value one.

The <mul> operation accounts for data blocks or multiple channel groups. For example, suppose that the
BAVERAGEBAVERAGEBAVERAGEBAVERAGE command is used to smooth the voltage readings from a group of 6 thermocouple devices. One of the 6
channels is then tested for a triggering condition (such as temperature limits) using a SKIPSKIPSKIPSKIP command and a LIMITLIMITLIMITLIMIT
command. To locate the 6-channel block of data corresponding to an event, specify 6 for the value of the <mul>
parameter. Note that the WAITWAITWAITWAIT command provides this channel multiplier factor implicitly when used with an input
channel pipe list, but in this example, the data comes from a user-defined pipe after averaging, and not from an
input channel list. The value of <mul> must always be positive, so if there is no data reduction, specify the value
one.

Notice that the <div> operation is applied first, with remainder ignored, and then the <mul> operation is applied.
The most important effect of this ordering is that the resulting trigger timestamps always occur at the first sample
in a group.

In practice, most applications will need only one of the three adjustments: a shift, reduction, or group scaling.

370 Chapter 19 DAPL Commands: TRIGSCALE

Examples

TRIGSCALE(T1, 0, 100, 100, T2)

Divide each event timestamp appearing in trigger T1 by 100, then multiply it by 100, placing the result in trigger
T2, with no time shift adjustment. The effect is to move any event occurring in a block of 100 samples to the
beginning of the block.

TRIGSCALE(T1, -100, 8, 1, T2)
Convert each trigger assertion appearing in trigger T1 to a trigger assertion in trigger T2, such that the new
timestamp corresponds to a location where 100 pre-trigger samples are available for each of 8 multiplexed
channels in a data stream. Trigger events prior to timestamp 100 are ignored.

See Also
LIMITLIMITLIMITLIMIT, WAITWAITWAITWAIT

Chapter 19 DAPL Commands: TRIGSEND 371

TRIGSEND

Define a task that transfers trigger information to another Data Acquisition Processor.

TRIGSEND (<in_trigger>, [<notify> ,] <pipe> [, <pipe>])

Parameters
<in_trigger>

Input trigger.
TRIGGER

<notify>
A value that specifies the number of samples to process before sending status information.
WORD CONSTANT | LONG CONSTANT

<pipe>
Output pipe(s) for encoded information.
LONG PIPE | LONG COMMUNICATIONS PIPE

Description
TRIGSENDTRIGSENDTRIGSENDTRIGSEND encodes trigger information in a data pipe, allowing this information to be transferred to another Data
Acquisition Processor for coordinated software trigger processing. TRIGSENDTRIGSENDTRIGSENDTRIGSEND extracts event and status
information from <in_trigger> and copies this information to the specified list of <pipe> destinations.

The optional <notify> parameter requests sending status information after processing each <notify> number of
samples from the data pipe associated with <in_trigger>. This parameter should normally be omitted, letting
the DAPL system supply a default. This parameter is useful in certain situations where sampling rates are slow. In
such situations, a reasonable number to specify would be the number of samples processed for triggering (with or
without events) in a few milliseconds. If this parameter is too small, TRIGSENDTRIGSENDTRIGSENDTRIGSEND can cause a high level of data bus
traffic which interferes with other PC communication.

The destination pipes must accept a long data type. An example of a compatible user-defined pipe is the following:

PIPE PXTRIG LONG

See Chapter 16 for information on how to set up the communication pipes.

A typical application for TRIGSENDTRIGSENDTRIGSENDTRIGSEND is triggered data acquisition on multiple, slaved Data Acquisition Processor
boards. A Data Acquisition Processor configured as a master can issue trigger events to a number of slave
processors, allowing software-controlled data capture at very high rates on many channels. Each slave board
receives and reconstructs the triggering information using a TRIGRECVTRIGRECVTRIGRECVTRIGRECV task.

Example

TRIGSEND(T1, XF2, XF3)

Encode the information from trigger T1 and transfer it through LONG communication pipes XF2 and XF3.

372 Chapter 19 DAPL Commands: TRIGSEND

See Also
PIPESPIPESPIPESPIPES, TRIGRECVTRIGRECVTRIGRECVTRIGRECV

Chapter 19 DAPL Commands: TSTAMP 373

TSTAMP

Define a task that is used to time stamp trigger events.

TSTAMP (<trigger>, <out_pipe>)

Parameters
<trigger>

Stream of trigger assertions.
TRIGGER

<out_pipe>
Output data pipe for the sample numbers of the trigger events.
WORD PIPE | LONG PIPE

Description
TSTAMPTSTAMPTSTAMPTSTAMP is used to observe the time stamps recorded by trigger events. TSTAMPTSTAMPTSTAMPTSTAMP waits for <trigger> assertions.
Each time <trigger> is asserted, TSTAMPTSTAMPTSTAMPTSTAMP puts the sample number of the trigger event into <out_pipe>. The
output value can then be treated as an ordinary fixed point number.

Multiplying the sample number generated by TSTAMPTSTAMPTSTAMPTSTAMP by the time interval between successive samples converts
the sample number to elapsed time.

Example

TSTAMP (T1, PL1)

Each time trigger T1 is asserted, place the sample number of the event causing the assertion into pipe PL1.

See Also
TRIGGERSTRIGGERSTRIGGERSTRIGGERS

374 Chapter 19 DAPL Commands: UPDATE

UPDATE

Specify the operating mode for an output updating configuration.

UPDATE <option>

Parameters
<option>

A keyword, one of the following.
BURST | BURSTCYCLE | CONTINUOUS

Description
The UPDATEUPDATEUPDATEUPDATE command selects the operating mode for an output updating configuration. The modes differ
primarily in how they restart after updating has been temporarily stopped because of data underflow or satisfying
the condition specified by a COUNTCOUNTCOUNTCOUNT command. The available operating modes are:

• CONTINUOUS mode. This is the default mode. Once started, updating activity continues indefinitely until
the supply of data is exhausted or the updating is stopped. Once stopped, updating remains stopped
regardless of additional data or hardware signals.

• BURST mode. Updating activity starts and stops similarly to the CONTINUOUS mode, but after stopping, it
resets. When new data are available and starting conditions are again satisfied, the updating activity can
restart.

• BURSTCYCLE mode. This mode is similar to the BURST mode, but the data supplied for the first burst are
retained in memory and used for all bursts. Only a hardware triggering signal is needed to resume updating
for subsequent bursts.

There are two conditions necessary to begin updating in all modes.

• Sufficient data to cover the requirements of the OUTPUTWAITOUTPUTWAITOUTPUTWAITOUTPUTWAIT command or CYCLECYCLECYCLECYCLE command must be
available.

• If hardware triggering is configured, the hardware triggering level must then be active.

Updating activity stops under one of the following conditions.

• The number of updates specified by the COUNTCOUNTCOUNTCOUNT command has been completed.

• No data were available when hardware updating needed them. This is an unintended underflow condition.

• A specific number of samples delivered to output processing have all been used. This causes a deliberate
and controlled underflow condition.

In the CONTINUOUS updating mode, or in the BURST updating mode prior to satisfying the COUNTCOUNTCOUNTCOUNT specification, an
underflow is considered an error condition, and results in a warning message. In the BURST mode, an underflow
that occurs at the time that a COUNTCOUNTCOUNTCOUNT command specification is satisfied is not considered an error condition, and it
is not diagnosed.

Chapter 19 DAPL Commands: UPDATE 375

When using the CYCLECYCLECYCLECYCLE command in the BURST updating mode, the COUNTCOUNTCOUNTCOUNT command must also be used, otherwise
there is no way to stop the bursts. Typically, the CYCLECYCLECYCLECYCLE length covers one period of a repeating waveform, and the
COUNTCOUNTCOUNTCOUNT command determines how many copies are generated by a burst.

The BURST mode expects new data to reinitialize it after stopping. The BURSTCYCLE mode retains all of its
previous data in memory and uses that data again the next time the updating is started. If you need to reconfigure
the output signal between bursts, you will want to use the BURST mode. If the output waveforms are always the
same, you will want to use the BURSTCYCLE mode.

Do not specify BURST mode or BURSTCYCLE mode output updating for a DAP configured as a SLAVESLAVESLAVESLAVE board.
These modes expect the DAP hardware to provide a start signal, but that hardware signal is disabled when a
master DAP provides the timing. A DAP configured as MASTERMASTERMASTERMASTER can operate in BURST mode, and the clocking
signals it generates will work with the slave boards in CONTINUOUS mode operation. This has the same effect as if
all boards were operating in a common BURST mode.

 Example

OUTPUTWAIT 21
COUNT 21
UPDATE BURST

Data are transferred to an external system in packets of 20 digital words, followed by a separator zero word.
Specify that output updating operates in burst mode, in groups of 21 words. Updating automatically stops after
each packet is delivered. The burst mode allows updating to resume as soon as the next packet of data arrives.

See Also
CYCLECYCLECYCLECYCLE, COUNTCOUNTCOUNTCOUNT, HTRIGGERHTRIGGERHTRIGGERHTRIGGER, OUTPUTWAITOUTPUTWAITOUTPUTWAITOUTPUTWAIT, SAMPLESAMPLESAMPLESAMPLE

376 Chapter 19 DAPL Commands: VARIABLES

VARIABLES

Define named variables.

VARIABLES <name> <type> [= <value>]
[, <name> <type> [= <value>]]*

VARIABLE <name> <type> [= <value>]
[, <name> <type> [= <value>]]*

VAR <name> <type> [= <value>]
[, <name> <type> [= <value>]]*

V <name> <type> [= <value>]
[, <name> <type> [= <value>]]*

Parameters
<name>

Text of assigned variable name.
Variable Name

<type>
Keyword for data type of new variable symbol.
WORD | LONG | FLOAT | DOUBLE

<value>
An optional initial value for the variable.
WORD CONSTANT | WORD VARIABLE |
LONG CONSTANT | LONG VARIABLE |
FLOAT CONSTANT | FLOAT VARIABLE |
DOUBLE CONSTANT | DOUBLE VARIABLE

Description
The VARIABLESVARIABLESVARIABLESVARIABLES command defines named, adjustable number values. Variables can be used by tasks to share
information that changes asynchronously. The <type> keyword specifies the data type of the new variable.

An initial value can be specified when defining a variable. Floating point variables and constants cannot be used to
assign a value to a WORD or LONG variable, but otherwise, any constant or variable is acceptable if it provides a
value in the representable range. If the equal sign operator and initializer term <value> are omitted, the variable is
created with an initial value of zero. The value of the variable is not changed by a STOPSTOPSTOPSTOP command, so use the LETLETLETLET
command if necessary to restore the initial value after running a DAPL configuration.

If the data type specification is omitted, the data type of the variable defaults to WORD. If there is an initializer
expression in this case, the value must be compatible with WORD data type.

Chapter 19 DAPL Commands: VARIABLES 377

Examples

VARIABLES V1 WORD,F2 FLOAT

Define two variables, each with an initial value of zero.

VAR GAMMA LONG = GAMMA17

Define a 32-bit variable GAMMA with an initial value taken from symbol GAMMA17.

See Also
CONSTANTSCONSTANTSCONSTANTSCONSTANTS, LETLETLETLET, SDISPLAYSDISPLAYSDISPLAYSDISPLAY

378 Chapter 19 DAPL Commands: VARIANCE

VARIANCE

Define a task that computes variance statistics for blocks of data values.

VARIANCE (<in_pipe>, <count>, <out_pipe>)

Parameters
<in_pipe>

Input data pipe.
WORD PIPE | LONG PIPE | FLOAT PIPE | DOUBLE PIPE

<count>
The number of data values per block.
WORD CONSTANT

<out_pipe>
Output pipe for variance data.
WORD PIPE | LONG PIPE | FLOAT PIPE | DOUBLE PIPE

Description
VARIANCEVARIANCEVARIANCEVARIANCE computes the variance of blocks of <count> data values from <in_pipe>. Each variance result is sent
to <out_pipe>.

In general, the input and output data types must match, but there is a special case for WORD input data because it is
common for the results to be too large to represent in a WORD output data type. The VARIANCEVARIANCEVARIANCEVARIANCE command will
allow a LONG output data type from processing WORD input data. LONG input data can produce the same sort of
range problems, but there is no higher precision fixed point type for safely returning its results, so use LONG input
data with caution.

The standard deviation of a sample block is computed as: sum the squared deviations from expected value, divide
by <count>. If you are using VARIANCEVARIANCEVARIANCEVARIANCE to estimate parameters of a normal distribution, the result will be slightly
biased. You can correct the bias by pre-computing the correction factor <count>/<count>-1 and applying this
using a DAPL expression.

Note: VARIANCEVARIANCEVARIANCEVARIANCE is equivalent to STDDEVSTDDEVSTDDEVSTDDEV but without a square root operation.

Example

PIPES P1W WORD, P2L LONG
VARIANCE (P1W, 10000, P2L)

Compute the variance of blocks of 10000 observations from WORD pipe P1W and place the variance result into
LONG pipe P2L.

See Also
AVERAGEAVERAGEAVERAGEAVERAGE, RMSRMSRMSRMS, STDDEVSTDDEVSTDDEVSTDDEV

Chapter 19 DAPL Commands: VECTOR 379

VECTOR

Define a vector data element.

VECTOR <name> <type> = (vn [, <vn>]*)

VECT <name> <type> = (vn [, <vn>]*)

VEC <name> <type> = (vn [, <vn>]*)

Parameters
<name>

Text of assigned vector name.
NAME

<type>
A keyword specifying a data type for the vector data.
WORD | LONG | FLOAT | DOUBLE

<vn>
A numeric value to initialize a term of the vector.
WORD CONSTANT | LONG CONSTANT | FLOAT CONSTANT | DOUBLE CONSTANT

Description
VECTORVECTORVECTORVECTOR defines a vector of numbers in shared DAPL system storage. The keyword <type> specifies the numeric
type of the data elements in the vector. The expressions <vn> in the initializer list specify constant numerical
values representable by the specified data type. Each vector term must be initialized, and the number of initializer
expressions in the list determines the vector length, which cannot exceed 16384 terms.

The initializer list can be coded on multiple command lines. Placing a list separator comma at the end of a line
tells the DAPL system to expect more initializer terms on the next line. It is sometimes acceptable to place a
backslash “\” continuation character at the end of continued lines, but doing so is not recommended. This
combines all of the lines into a single long line for processing, and could overflow the maximum command line
length.

380 Chapter 19 DAPL Commands: VECTOR

Examples

VECTOR A LONG = (1,2,-3,-4)

Define a four element vector of 32-bit LONG integer values.

VECTOR B WORD = (5,6,7,8,
 9,10,11,
 12,13)

Define a vector of nine 16-bit WORD values using multiple command lines.

VECTOR C DOUBLE = (1, 4.555, -1E6)
Define a three element vector of 64-bit DOUBLE data type.

See Also
COPYVECCOPYVECCOPYVECCOPYVEC, FIRFILTERFIRFILTERFIRFILTERFIRFILTER

Chapter 19 DAPL Commands: VRANGE 381

VRANGE

Set the default input voltage range for a sampling configuration.

VRANGE [<low> <high> | BIPOLAR=<high>]

Parameters
<low>

Input voltage low limit.
WORD CONSTANT | FLOAT CONSTANT

<high>
Input voltage high limit.
WORD CONSTANT | FLOAT CONSTANT

Description
VRANGEVRANGEVRANGEVRANGE is available for Data Acquisition Processor models that have a programmable input voltage range. Only
certain specific voltage ranges are allowed. See the manual for each Data Acquisition Processor model for
information about supported ranges.

The <low> parameter specifies the low limit of the input voltage range. The<high> parameter specifies the high
limit of the input voltage range. When the alternate BIPOLAR notation is used, only the <high> limit is specified,
and the implied <low> limit is the negative of the high limit. Voltage ranges are typically an exact integer number
of volts, with no decimal fraction required.

Because the VRANGEVRANGEVRANGEVRANGE command establishes a default condition that will be used for configuring all data channels,
the VRANGEVRANGEVRANGEVRANGE command should appear as one of the first commands following the IDEFINEIDEFINEIDEFINEIDEFINE command.

Example

IDEFINE INP3
 GROUPS 3
 VRANGE -10.0 +10.0
 SET IP(0..3) SPG0
 SET IP(8..11) SPG1
 SET IP(4..7) SPG2
 TIME 5
END

Set the default input voltage range for sampling configuration INP3 to be –10 to +10 volts. This voltage range is
applied to all channel groups in the configuration.

See Also
SSSSETETETET, IDEFINEIDEFINEIDEFINEIDEFINE

382 Chapter 19 DAPL Commands: WAIT

WAIT

Define a task that selects data according to trigger events.

WAIT (<in_pipe>, <trigger>, <pre>, [<post>], <out_pipe>)

Parameters
<in_pipe>

Input data pipe.
WORD PIPE | LONG PIPE | FLOAT PIPE | DOUBLE PIPE

<trigger>
The trigger that is examined.
TRIGGER

<pre>
The number of values to transfer before the trigger event.
WORD CONSTANT | LONG CONSTANT

<post>
The number of values to transfer after the trigger event.
WORD CONSTANT | LONG CONSTANT

<out_pipe>
Output data pipe.
WORD PIPE | LONG PIPE | FLOAT PIPE | DOUBLE PIPE

Description
A WAITWAITWAITWAIT task skips data from <in_pipe> until <trigger> is asserted. When a trigger is asserted, WAITWAITWAITWAIT then
transfers <pre> values from immediately before the trigger event and <post> values immediately after the trigger
event from <in_pipe> to <out_pipe>. The sample of the event is considered to be the one occurring exactly at
or immediately after the external event. Numbers <pre> and <post> are nonnegative integers. If specified,
<post> must not be zero. The number <pre> is often called the pre-trigger count and the number <post> is often
called the post-trigger count. The number of samples retained after each event is <pre> + <post>. If <post> is
omitted, the WAITWAITWAITWAIT task transfers data continuously after an event occurs. The data types of the input and output
pipes must match.

The data rate into <in_pipe> must be the same as the rate of the data that cause the trigger assertion; otherwise,
the asserted trigger count does not correspond to the correct <in_pipe> data.

WAITWAITWAITWAIT treats an input channel pipe list as a special case. When processing trigger information, WAITWAITWAITWAIT multiplies the
trigger counts by the number of input channel pipes in the input channel pipe list. WAITWAITWAITWAIT assumes that the task
asserting the trigger is testing data at the speed of only one input channel pipe. This allows WAITWAITWAITWAIT to accurately
handle several input channel pipes while the triggering command is scanning a single input channel pipe.

Examples

WAIT (IP(0..3), T1, 0, 100, P1)

Chapter 19 DAPL Commands: WAIT 383

Wait for a trigger assertion on trigger T1 and after the trigger event, transfer a block of 100 values, 25 values for
each channel, from the input channel pipe to pipe P1.

WAIT (P2, T2, 50, 25, P3)
Wait for a trigger assertion on T2 and transfer from pipe P2 to pipe P3 50 values before and 25 values after the
trigger event.

WAIT (PX, T1, 0, PY)
Wait for a trigger assertion on trigger T1 and transfer data continuously from pipe PX to pipe PY starting with the
sample of the trigger event.

See Also
DLIMITDLIMITDLIMITDLIMIT, LIMITLIMITLIMITLIMIT, LOGICLOGICLOGICLOGIC, TRIGSCALETRIGSCALETRIGSCALETRIGSCALE

Chapter 21 Previous Versions of DAPL 385

20. Previous Versions of DAPL

This section summarizes obsolete DAPL features that either cannot be supported now or will necessarily become
unavailable in future releases.

The DAPL operating system has changed substantially in response to users’ requirements. In the course of this
development, considerable effort has gone into maintaining compatibility among operating system versions to
protect users’ investments in applications software. Yet some changes are inevitable, as new generations of high-
performance components with greatly increased speed and capacity replace older components that are no longer
available. Usually, new DAPL systems cannot both take advantage of the new device capabilities and yet operate
within all of the constraints of older devices. Where possible, the DAPL system supports obsolete features by
providing special software hooks, allowing applications to continue to operate much as before. It is only a matter of
time, however, until the obsolete features become too difficult to maintain in this manner and then they will cease to
be available.

New applications should not use the obsolete features listed here, even if they seem to work. Where noted, the
features listed are still available and applications that have depended on them in the past will continue to work as
before, at least for a while. Existing applications requiring commands or other features that are no longer available
must be modified to work with current DAPL system versions. In most cases, equivalent or superior functionality is
available using newer commands.

The DAPL 3000 system represents a major new development, and several commands that were in previous versions
of the DAPL system and announced for retirement are unavailable in this DAPL 3000 system release.

386 Chapter 21 Previous Versions of DAPL

System Commands Now Obsolete

BDOWNDLOAD Download 16-bit commands using the DAPIO32
programming interface or a software utility such as
CDLOAD32.EXE .

UPDATE
(for input
sampling)

This command was incorrectly named. Input procedures have
nothing to do with output updating. The command is now
called SAMPLESAMPLESAMPLESAMPLE.

Processing Commands Now Obsolete

OFFSET Use a DAPL expression.

FFT32 Use the FFTFFTFFTFFT command. If you specify FFT32, what you will
actually get is FFTFFTFFTFFT except restricted to 16-bit data.

LCOPY The LCOPY command can no longer provide latency control
features. Processing is routed to the COPY command, which
has no latency control. Alternative configuration options will
eventually replace the intended functionality of LCOPY.

PID1 This command form is accepted, but it does not respond to the
supervisory ramping and latching features. For those features,
you must upgrade to the PIDPIDPIDPID command and use the new
PIDRAMPPIDRAMPPIDRAMPPIDRAMP and PIDLATCHPIDLATCHPIDLATCHPIDLATCH commands.

SCALE Use a DAPL expression.

CHANGE Use the DLIMITDLIMITDLIMITDLIMIT command.

Processing Commands Now Retired

PRINT Use a FORMATFORMATFORMATFORMAT command.

WAVEFORM You can still generate all of the same waveforms. Just specify
the type of waveform you want directly, e.g., SINEWAVESINEWAVESINEWAVESINEWAVE.

PWM This was replaced by a new command PWMPWMPWMPWM with the same
name but different configuration parameters.

INTEGRATE,
BINTEGRATE

These are replaced by the new RSUMRSUMRSUMRSUM command. All of the old
capabilities except a reset using a software trigger are
supported. The RSUMRSUMRSUMRSUM command supports all data types.

PEAK This command could not be extended to accept all data types.
It also had some uncorrectable problems that could in some
circumstances cause data loss.

Chapter 21 Previous Versions of DAPL 387

EXTRACT Use a DAPL expression to mask the bits you want to keep,
adjust their polarity, and shift them to any position you want.
 bit = Port&Mask >> Shift

SCAN
LSCAN

Not needed in the DAPL 3000 system.

CABS Use a DAPL expression of the form
 mag_sq = a*a + b*b.
Or, for a true complex value magnitude, use the CMAGCMAGCMAGCMAG
command.

388 Chapter 21 Previous Versions of DAPL

Channel List Lengths

DAPL version 2000 accepted an old notation on the IDEFINEIDEFINEIDEFINEIDEFINE command and the ODEFINEODEFINEODEFINEODEFINE command specifying the
number of channels. This notation is no longer supported. The CHANNELSCHANNELSCHANNELSCHANNELS or GROUPSGROUPSGROUPSGROUPS command must be used
instead.

Hardware Pin Notations

When using a counter-timer board and assigning a CT pin type to an input channel using a SETSETSETSET command, the
keyword notation ICLOCK is required. The older notation with an arbitrary number code is no long accepted.

Name Conflicts

Older applications might define symbol names that conflict with new DAPL keyword and command names. Such
conflicts can be solved by changing the user defined symbol names to other names not reserved by the DAPL
system.

Latency Control Options

The DAPL system command OPTIONS BUFFERING=OFFOPTIONS BUFFERING=OFFOPTIONS BUFFERING=OFFOPTIONS BUFFERING=OFF is treated as advisory by all tasks. It has no direct
meaning to the DAPL system. Buffering improves system throughput, but it typically results in real-time delays. If
there is a means by which a command can move small amounts of data through the system quickly in response to
events, then those means will be employed when BUFFERING=OFF is specified. If a command has no such means, or
if moving small amounts of data is not the purpose of the command (for example, an FFT always processes data in
blocks), the command can ignore this configuration option.

OPTIONS SCHEDULING is no longer configurable, and this option is ignored. The entire DAPL 3000 system
operates under a single unified scheduling scheme that is better than any of the previously available options.

Variables in Parameter Lists

In DAPL 2000, certain commands that require constant-valued parameters would accept variables. This was for
compatibility with earlier versions of DAPL, but it was not strictly correct. Variables can change value at any time,
but the DAPL 2000 tasks did not always detect and respond appropriately to the changes. In DAPL 3000, task
parameters that are supposed to be constants must be constants, either explicit numerical values or named constant
values. Variable names cannot be substituted.

Supporting Older Software

For supporting legacy applications that used DAPL 2000 or earlier system versions, contact Microstar Laboratories
to obtain a copy of the software document pertinent to that generation of hardware and software.

Chapter 21 Glossary 389

21. Glossary

The following definitions explain terms that refer to various hardware and software features of the Data Acquisition
Processor.

a Series
 a Series refers to Data Acquisition Processor models that use the letter ‘a’ in the model name.

Analog Input
 An analog input is a hardware pin that connects a continuous voltage signal to the input amplifiers that precede

an analog-to-digital converter. When analog input expansion boards are used, the number of available analog
input pins is increased.

Analog Output
 An analog output is a hardware pin where a continuous voltage is driven by a digital-to-analog converter. When

analog output expansion boards are used, the number of available analog output pins is increased.

Asynchronous
 This is a descriptive term for processes, events or activities that are not coordinated by a sampling or updating

clock. Updates of analog outputs using the DACOUTDACOUTDACOUTDACOUT command are asynchronous because updates could occur in
rapid irregular bursts depending on data arrival time and the number of samples received. Changes of variable
values are asynchronous because tasks might process more or less data before they see a change in the variable
value, causing the apparent time that the change takes effect to be indeterminate.

Binary Fraction
 A fixed point number can be interpreted as a fraction, where the most-significant bit indicates sign, and a binary

point is assumed just after the sign bit. The first bit after the binary point is equivalent to a value of 1/2. The next
bit is equivalent to a value of 1/2 to the second power, or 1/4. The next bit is equivalent to a value of 1/2 to the
third power, or 1/8, and so forth. This pattern continues down to the last available bit. As an example, the binary
fraction interpretation is useful when representing FFT windows as a vector of fixed point numbers.

Block
 Used as a noun, a block is a collection of associated samples. The samples can be closely related, in the manner

of spectrum blocks produced by an FFTFFTFFTFFT command, or the association can be temporary in the manner of data
buffered for a bulk transfer. Used as a verb, a task is blocked if it cannot proceed with execution because data is
unavailable or because processing of another task prevents it.

Built-in Commands
 The task definition commands provided with each distribution of the DAPL operating system and described in

this manual are called built-in because they are loaded by default when the DAPL system starts. There is usually
nothing to be gained from unloading the command module that provides these commands.

Burst Mode
 Burst mode is a method for input sampling or output updating. During burst mode, a hardware trigger signals for

input or output to begin, and sampling or updating continues for a predefined number of samples. When another
hardware trigger event occurs, input or output starts again. So, data is received or sent in “bursts.”

390 Chapter 21 Glossary

Channel Group
 For Data Acquisition Processor models that support simultaneous sampling groups, a channel group is a logical

assignment of channels in the input sample pipe receiving simultaneously-captured data from an associated input
pin group. The channels are numbered consecutively, and correspond in fixed order to the sampled pins.
Restrictions on defining channel groups are discussed with the SETSETSETSET command and DAP hardware
documentation..

Communication Pipe
 A communication pipe (abbreviated “com pipe”) is a special pipe used to coordinate transfers of data between

the Data Acquisition Processor and its host PC.

Custom Command Module
 A custom command module is a dynamically downloadable 32-bit code module providing specialized processing

commands. Tasks defined by commands in a custom module are equivalent in status to tasks defined by built-in
processing commands. They have the same access to internal system features.

DAPL Expression
 A DAPL expression defines a task that reads from pipes, input channel pipes, or variables, performs arithmetic

and bitwise operations, and puts results into a pipe, output channel pipe or variable. DAPL expressions provide
flexible means for performing arithmetic and logical operations on data streams.

DAPL Symbols
 DAPL symbols are names assigned to elements and recorded within the DAPL system. DAPL symbols can refer

to system variables, processing commands, user-defined variables, constants, pipes, triggers, and downloaded
modules.

DAPL System Tasks
 DAPL system tasks are hidden tasks, including the DAPL command interpreter and various system tasks that

manage buffers, gather statistics, and perform run-time optimizations.

Differential Input
 A differential input is a pair of analog input pins. One of the pins is designated the ‘positive’ input pin and the

other is designated the ‘negative’ or ‘inverting’ input pin. The voltage difference between the positive input pin
and the negative input pin is measured.

Digital Input Port
 A digital input port is a set of digital input pins in groups of 16, that are captured simultaneously. The bits in a

fixed-point number represent the state of the pins when sampled. Notations for associating an input channel with
a digital input port are discussed with the SETSETSETSET command. The number of available digital input ports is increased
when digital input expansion boards are used.

Digital Output Port
 A digital output port is a set of digital output pins, typically 8 or 16, that are updated simultaneously. For

applications that must control output bits individually, some processing commands provide ‘masking’ ability, so
that the updates change the values only of specified pins within the output port. The number of available digital
output ports is increased when digital output expansion boards are used.

Fast Input Sampling
 Fast input sampling is an interleaving strategy for SETSETSETSET commands in an input procedure. By defining a sampling

order such that each analog input pin is preceded by a sufficient number of digital input pins, some of the setup

Chapter 21 Glossary 391

time associated with the analog channels can be overlapped with the sampling of the digital channels, allowing a
smaller TIME interval than sampling of analog channels alone would allow.

Input Channel Pipe
 An input channel pipe is a special pipe into which Data Acquisition Processor hardware places analog

conversion values and digital input data. Each input channel is associated with an analog input pin, input pin
group or digital input port. Voltages at input pins or pin groups are captured and digitized, and the values stored
in multiplexed order. There does not have to be a one-to-one relationship between analog input pins and input
channels. Some input channels may be ignored, and some input channels may result from repeated sampling of
the same input pin, possibly at different gains. An active input procedure really has only one input channel pipe,
but any number of tasks can read data from the same input channel pipe in different combinations, making it
appear as if multiple input channel pipes exist.

Input Communication Pipe
 An input communication pipe is a communication pipe that accepts data from the host PC for transfer to the

DAPL system.

Input Configuration Command
 An input configuration command is a command located within a command group between an IDEFINEIDEFINEIDEFINEIDEFINE

command and its associated ENDENDENDEND command. An input configuration command controls the sampling
configuration of the Data Acquisition Processor.

Input Pin Group
 An input pin group is a set of analog input pins, determined by the Data Acquisition Processor hardware

architecture, for which voltages are captured simultaneously.

Input Procedure
 An input procedure is a set of commands between an IDEFINEIDEFINEIDEFINEIDEFINE command and its associated ENDENDENDEND command. An

input procedure specifies a configuration that samples various combinations of analog and digital inputs, placing
the digitized data into the input channel pipe.

Multiplexed Input
 Multiplexed input is a configuration of digital or analog input pins, sampled by Data Acquisition Processor

architecture in sequence. Samples from input pins appear interleaved in the captured data stream. When the
architecture organizes pins into input pin groups, the data blocks from pin groups are multiplexed within the data
stream. When an input channel pipe is used with a channel list notation in a task definition parameter list, data
from those channels appear in a multiplexed sequence.

Multitasking
 Multitasking is a capability of an operating system such as DAPL to allow multiple processing tasks to execute

as though they were completely independent and running simultaneously. The physical processor can only
execute one instruction sequence at any given time, so a multitasking system provides a means of temporarily
suspending some processing while resuming other processing, thus allowing all tasks to make progress even if
they do not truly run at the same time.

Output Communication Pipe
 An output communication pipe is a communication pipe that transmits data from the DAPL system to the host

PC.

392 Chapter 21 Glossary

Output Channel Pipe
 An output channel pipe is a special pipe from which Data Acquisition Processor hardware takes values for

clocked digital-to-analog conversion or clocked digital output. Each channel in the output channel pipe is
associated either with an analog output pin or with a digital output port.

Output Configuration Command
 An output configuration command is a command located within a command group between an ODEFINEODEFINEODEFINEODEFINE

command and its associated ENDENDENDEND command. An output configuration command controls the output update
configuration of the Data Acquisition Processor.

Output Procedure
 An output procedure is a set of commands between an ODEFINEODEFINEODEFINEODEFINE command and its associated ENDENDENDEND command. An

output procedure specifies a configuration that updates analog or digital outputs in any combination.

Pipe
 A pipe is a high-level first-in-first-out buffer for temporary storage of data. Com pipes, input channel pipes, and

output channel pipes are special types of pipes. In concept, data are added to one end of a pipe and removed from
the other end. Pipes are sometimes informally called data streams. The size of elements within the pipe depends
on the data type of the pipe. Storage space is allocated and released automatically, allowing a pipe to grow or
shrink as required. If data are added to a pipe faster than they are removed, the size of the pipe increases up to its
maximum capacity. Attempting to place data into a pipe that has reached its capacity limit, or attempting to
remove data from a pipe that has no data, results in the requesting task being blocked. Each task receives data
from the pipe in the order in which the data entered. If multiple tasks read data from a pipe, each reader task sees
a complete independent copy as if the other readers were not there.

Predefined Pipe
 When the DAPL system is started, several communication pipes are automatically established: $SysIn,
$SysOut, $BinIn, and $BinOut. The DAPL interpreter reads commands from the $SysIn input com pipe.
Text output produced by the DAPL interpreter and by processing commands is sent to the $SysOut output com
pipe. $BinIn is an input com pipe and $BinOut is an output com pipe reserved for high-speed binary data
transfers between the DAPL system and the PC host.

Print
 A task is said to print data when it sends the data to the PC encoded in a text form. Printing sends data to the

screen of the PC or to a printer only under control of a PC application program.

Processing Procedure
 A processing procedure is a set of commands between a PDEFINEPDEFINEPDEFINEPDEFINE command and its associated ENDENDENDEND command.

Each command within a processing procedure defines a processing task. Tasks can be defined using built-in
processing commands, DAPL expressions, or commands from user-developed custom command modules. All
the tasks in a processing procedure are started and stopped together.

Prompt Character
 When the DAPL system interpreter is requesting input from the user in an interactive mode of operation, a

character is displayed at the beginning of the input line. This character, usually “#”, is called the prompt
character. The prompt character changes within input, output and processing procedure definitions.

Scheduling
 Scheduling is the strategy and its application for selecting and running tasks in a multitasking operating system.

The scheduling strategy attempts to guarantee that the most urgent processing is completed quickly, and
otherwise, all processing gets an opportunity to run.

Chapter 21 Glossary 393

Scheduling Quantum
 The scheduling time quantum is a parameter configured by the OPTIONS QUANTUMOPTIONS QUANTUMOPTIONS QUANTUMOPTIONS QUANTUM command. The time

quantum specifies how much computing time a task can consume at each opportunity before the preemptive
scheduling policy takes effect so that other tasks at equal priority can run. System throughput is typically better if
a longer time quantum is specified, so that processing completes with the least interruption. However, real-time
response is typically better when the scheduling quantum is small, so that multiple tasks at the same priority do
not excessively delay response to a critical real-time event.

Single-ended Input
 A single-ended input is an analog input for which voltages are measured with respect to a common reference

ground.

Start Group
 All processes started by the list of items on a STARTSTARTSTARTSTART command. Tasks within a start group are able to read copies

of the data streams produced by other tasks within the start group.

String
 In a DAPL configuration, a string is a sequence of characters enclosed in quotation marks (“ ”). DAPL

enforces length constraints on the strings, strips out any unprintable character codes, and converts alphabetic
characters in these strings to upper case. Strings used locally by commands in custom command module
development follow the programming language conventions and can contain a mix of upper and lower case
characters.

Synchronize
 In the context of sampling and updating, synchronization means using a common time reference, usually a

precision oscillator, to establish the instants at which data capture or output updating events occur. In the context
of task scheduling, synchronization is a process of temporarily imposing sequence constraints on tasks that might
otherwise run independently. For example, a task that reads data from a pipe must wait until some other task has
placed the data into the pipe. Access policies to preserve referential integrity are sometimes called
synchronization. For example, a request to delete a pipe must be denied if a processing configuration uses that
pipe. In the context of data streams, two streams are considered synchronized if effects observed at
approximately the same place in both streams correspond to the same real-time event.

Task
 A task is a unit of data processing that occurs when a processing configuration is running. Tasks are defined by

commands in a processing definition, but the tasks do not exist until the processing runs. Once processing is
started, a task can access data from user-defined, input channel, or communication pipes; modify the data;
generate new data; update shared variable values; adjust certain direct outputs asynchronously; process software
trigger events; generate message texts; and place results in user-defined, output, or communication pipes.

Task Definition Command
 Each command following the PDEFINEPDEFINEPDEFINEPDEFINE command up to its corresponding ENDENDENDEND command is a task definition.

Tasks can be defined using built-in processing commands, DAPL expressions, or commands from user-
developed custom command modules. A task definition command can be entered several times with different
parameters to define separate tasks that execute independently.

Timestamp
 A timestamp is a sample number, determined by a cumulative count of all samples that pass through a pipe. In

most applications, the timestamp also equals the number of samples captured by the active input procedure and
processed by the task that asserts a trigger.

394 Chapter 21 Glossary

Trigger
 In the context of hardware, a trigger is a digital logic signal that controls when sampling or updating activity is to

start. Subsequent to the trigger event, sampling activity can continue under control of an independent clock. In
the context of processing software, a trigger is a special pipe for synchronizing task data processing. When a
trigger is asserted, the timestamp of the data value that caused the assertion is placed in the trigger. One task can
assert a trigger, and one or more tasks can wait for the assertion of the trigger. When a waiting task receives a
trigger assertion, it processes data relative to the location of the trigger event in its data stream. Because the
triggering is relative to positions within a data stream, rather than real time, a software trigger event can be used
to locate data before or after the position of the trigger event.

Trigger Assertion
 A trigger assertion is recognition by a task of a special condition, typically a data sequence that satisfies special

properties, followed by posting of a trigger event in a trigger pipe.

Trigger Event
 In the context of a hardware trigger, a trigger event is the occurrence of a signal feature that activates the

triggering hardware. For software triggering, a trigger event is a trigger assertion indicated by the presence of an
event timestamp in a trigger pipe.

Truncation, Saturation
 In some cases it is impossible to fit the result of a calculation in the storage space allocated for the result. For

example, if a DAPL expression adds the values 30000 and 31000 from two word data pipes, the sum of 61000 is
greater than the maximum +32767 that can be represented by a 16-bit word value. The range limit depends on
the data type. If the data is made to fit by chopping away some of the bits, this is called truncation. For example,
if a DAPL expression computes a 32-bit bitwise expression and then stores the results in a 16-bit word pipe, the
higher-order 16 bits are truncated. If the data is made to fit by finding the nearest value that is representable, this
is called saturation. For example, if a DAPL expression computes a floating point value of 32800.0 and assigns
this to a word value, the word value is saturated to +32767 because that is the largest available positive number.
Built-in processing commands for the DAPL system apply saturation, as needed, because this correctly indicates
the sign of the result, and does not produce large artificial jumps between very large positive and negative
values.

Variable
 In the context of the DAPL system, a variable is an element of storage defined by the VARIABLESVARIABLESVARIABLESVARIABLES command.

The storage of a variable is available for shared access by DAPL processing tasks and PC applications. In the
context of a custom module programming environment, a variable is storage known only to the task, and it is not
accessible by other tasks. A variable always contains the most recent value transferred to it.

Index 395

Index
$BinIn ..76, 78, 392
$BinOut..76, 77, 392
$SysIn ..76, 78, 392
$SysOut... 76, 392
16-Bit Memory Allocation ...80
About Efficiency..24
ABS ..149
Adaptive scheduling...105
Adding communication pipes ...124
Additional Com Pipes ..78
AINEXPAND..265
ALARM ..150
Aliasing...140
ALLSYMBOLS...203
Analog input..389
Analog Input Voltages ...49
Analog output ..389
Applying Software Triggers ...112
Applying Trigger Operating Modes ..119
Architectural Basics ...16
Arithmetic expression ..39
Arithmetic Operators..40
Asynchronous ..389
Asynchronous Events and PCASSERT...126
AVERAGE..106, 114, 129, 130, 152
BAVERAGE ... 114, 153
Benchmarking ...84
Binary Fractions .. 53, 389
Binary Representation..51
Binary transfer rate ..81
Bipolar ..49
Bitwise operators ...41
Block...389
BLOCKED task...86
BMERGE... 77, 80, 83, 154
BMERGEF...77, 80, 155
BOUND ..157
BPOUTPUT ..265
Buffer overflow ...97
Buffer underflow ...97
Buffering...44
BUFFERING...265
Buffering and Latency..71
Buffering Control...104
Buffering During Expression Evaluation...44
BUFFERS ...158
Built-in Command ...389
Burst mode ...66, 101, 389
Burst Mode..70
CALIBRATE...159
CANGLE ..160

396 Index

Channel group ...390
Channel List Clocking..68
Channel List Lengths ...388
Channel lists ..16
Channel Pipe Efficiency...82
Channel pipe list optimizations...82
Channel Pipe Notations..22
Channel pipe overflow ...98
Channel pipes ..16
CHANNELS..58
CHANNELS (input sampling)..161
CHANNELS (output updating) ..163
CHIRP...164
Choosing Data Types ...135
CLCLOCKING ...166
CLCLOCKING OFF..68
CLCLOCKING ON...68
CLOCK (input sampling) ...167
CLOCK (output updating)..168
Clock control ...64
CLOCK EXTERNAL ..68
CMAG ..169
CMDSPEC..203
Com pipe... 75, 390
COMMANDS ...203
Commands Reference ..57
Communication Formats ..81
Communication pipe...75, 124, 390
Complex FFT ..141
Complex types ...55
COMPRESS..170
Configuration Commands .. 28, 57
Configuration Control ..57
Configuring Priorities...89
CONST ...172
CONSTANT..172
CONSTANTS ..39, 172, 203
Conversion Values...50
Conversions Between Types...55
Converting to Engineering Units...55
COPY...77, 83, 174
Copyrights and Trademarks.. i
COPYVEC..175
CORRELATE ...176
Cosines..141
COSINEWAVE...178
COUNT.. 64, 66, 84, 99, 101
COUNT (input sampling)...180
COUNT (output updating)..181
CPIPES ...204
CREATED task ...86
CROSSPOWER...182
CTCOUNT..184
CTRATE ...185
Custom Command ...390

Index 397

Custom Module ...390
Custom Processing Commands...25
CYCLE ... 101, 186
D...203
DACOUT ..187
DAPcell...124
DAPL..15
DAPL Commands..147
DAPL Expression Examples ..46
DAPL Expressions... 39, 390
DAPL symbols ..390
DAPL System Task..390
DAPL Tasking States...86
DAPLNAME...204
Data Extraction..44
Data Management..34
Data Processing Configuration ...18

Element Definition Commands ..18
Input Configuration Commands ...19
Output Configuration Commands...19
System commands ...18

Data Reduction ..34
Data Selection..34
Data Transfer...75
Data Types ..40
DEAD task ..86
DECIBEL..191
DECIMAL ..265
Defining Software Triggers ..110
Definitions...389
DELTA ...193
Destructive Tests and One-Shot Events...120
DEXPAND..194
DFT ...134, 136, 196
DFT Commands ..134
DHARDWARE ...204
Differential input ...390
Digital Filtering ... 81, 129
Digital input ..390
Digital Input Voltages ..49
Digital output...390
Digital Signal Processing ... 36, 81
DIGITALOUT...199
Direct Interaction with the Interpreter ...24
Discrete Fourier Transforms...133
DISP ...203
DISPLAY...18, 80, 203
DISPLAY ALL ...203
DISPLAY ALLSYMBOLS..203
DISPLAY CMDSPEC ...203
DISPLAY COM ..203
DISPLAY COMMAND...203
DISPLAY COMMANDS...203
DISPLAY CONST ..203
DISPLAY CONSTANT...203

398 Index

DISPLAY CONSTANTS...203
DISPLAY CP ..204
DISPLAY CPIPE...204
DISPLAY CPIPES ..204
DISPLAY DAPLNAME..204
DISPLAY DHARDWARE ..204
DISPLAY DMODEL...204
DISPLAY DREVISION...204
DISPLAY DVARIANT ...204
DISPLAY DVERSION..204
DISPLAY EMSG ..204
DISPLAY ENUM..204
DISPLAY ERROR ..204
DISPLAY ERRORS ..204
DISPLAY EVMSG..204
DISPLAY EVNUM ...204
DISPLAY HM...205
DISPLAY HMEM ...205
DISPLAY HMEMORY ...205
DISPLAY IC ...205
DISPLAY ICOUNT...205
DISPLAY ICOUNTS...205
DISPLAY IN...205
DISPLAY INPUT..205
DISPLAY INPUTS..205
DISPLAY KNLLOG ...205
DISPLAY M ...205
DISPLAY MEM..205
DISPLAY MEMORY..205
DISPLAY MOD..205
DISPLAY MODULE...205
DISPLAY MODULES...205
DISPLAY OC..205
DISPLAY OCOUNT ...205
DISPLAY OCOUNTS ...205
DISPLAY OEMID ..205
DISPLAY OPT..205
DISPLAY OPTIONS ...205
DISPLAY OUT ...205
DISPLAY OUTPORT ...205
DISPLAY OUTPORTS ...205
DISPLAY OUTPUT ..205
DISPLAY OUTPUTS..205
DISPLAY OVER...205
DISPLAY OVERFLOW..205
DISPLAY OVERFLOWQ ...205
DISPLAY P...205
DISPLAY PIPE ...205
DISPLAY PIPES ... 99, 205
DISPLAY PROC...206
DISPLAY PROCEDURE ..206
DISPLAY PROCEDURES ..206
DISPLAY SERIAL..206
DISPLAY START...206
DISPLAY STARTS...206

Index 399

DISPLAY STR..206
DISPLAY STRING ...206
DISPLAY STRINGS ...206
DISPLAY SYM...206
DISPLAY SYMBOL ...206
DISPLAY SYMBOLS ...206
DISPLAY SYSLOG ..206
DISPLAY TM ...206
DISPLAY TMEM..206
DISPLAY TMEMORY..206
DISPLAY TRIG ..206
DISPLAY TRIGGER...206
DISPLAY TRIGGERS ..206
DISPLAY UNDER..206
DISPLAY UNDERFLOW ...206
DISPLAY UNDERFLOWQ...206
DISPLAY VAR...206
DISPLAY VARIABLE..206
DISPLAY VARIABLES..206
DISPLAY VEC ...206
DISPLAY VECTOR..206
DISPLAY VECTORS..206
DISPLAY WMSG ...207
DISPLAY WNUM ..207
DLIMIT ..208
DLOG32 ...83
DMODEL..204
Double...54
DREVISION ...204
Dummy channel pipes..99
DVARIANT ..204
DVERSION...204
ED...210
EDIT ... 118, 210
Efficiency..24
Element Definition Commands...18
EMPTY...212
EMSG...204
END..19, 24, 58, 61, 89, 213
Engineering Units ..55
ENUM...204
Equalizing Data Rates ..114
ERASE.. 18, 214
ERRORQ ..265
ERRORS...204
Errors in the FFT ...143
Evaluating Task Latency..106
Event Counting Application ...119
Event Processing..35
EVENTLOGSIZE..265
EVMSG ..204
EVNUM..204
Example Command..148
Expression terms..39
External Clock...68

400 Index

F ...222
Fast Fourier transform..81

Window vectors...137
Fast Fourier Transform... 133, 198
Fast input sampling.. 352, 390
FFT ...81, 127, 133, 134, 135, 136, 137, 196, 215
FFT Commands ...134
FFT Modes..136
FGEN..131
FILL.. 78, 222
Filter coefficients ...130
Filtering...36
FINDMAX .. 24, 223
Finite Impulse Response Filters..130
FIR filters ..130
FIRFILTER .. 81, 130, 131, 225
FIRLOWPASS ... 91, 130, 140, 229
Float..54
FLOATERROR...266
Floating Point ..54
FORMAT... 23, 76, 79, 232
Fourier Transforms ..133
FREQUENCY...236
Functional Categories of Tasks...34
General Rules for Command Syntax...21
Generating Filter Coefficients...130
Glossary ..389
Grouping operators ..42
GROUPS... 58, 237
GROUPSIZE ... 58, 238
Hardware buffering..71
Hardware control ...64
Hardware triggering... 64, 84
HELLO ...239
Hexadecimal..51
Hexadecimal Representation ..51
HIGH ..240
High Speed Triggering...84
HMEMORY..205
How Software Triggering Works..112
HTRIGGER..64, 66, 117
HTRIGGER (input sampling)...241
HTRIGGER (output updating)..242
HTRIGGER ONESHOT ..66
ICOUNTS ...205
IDEF ...243
IDEFINE .. 19, 24, 29, 58, 243
Input Channel group...390
Input channel pipe..391
Input com pipe...391
Input Configuration Commands...19, 29, 391
Input procedure..391
Input Sampling Configurations...58
Input voltage ranges...49
INPUTS ..205

Index 401

Integer ... 51, 54, 55
Integers Used by DAPL ...54
Interleaving of Output ..79
Internal and External Clocking ...68
INTERP ..245
Interpreting the FFT for Real Data..142
Introduction ...13
KNLLOG ..205
Latency ... 71, 107
Latency Control Options ..388
LET... 78, 247
LIMIT ...20, 24, 67, 84, 124, 249
LOADING ..251
LOGIC ..253
Long..54
LOW ...255
Low Latency..103
Low Latency Commands..106
MASTER .. 124, 257
Mathematical expression..39
MEMORY...205
Memory Allocation..80
Memory overflow ..97
MERGE ... 77, 80, 83, 258
MERGEF ...77, 80, 260
MODULES ...205
Monitoring ..36
Multiplexed Input ..391
Multitasking .. 79, 391
Name Conflicts..388
Negation..42
NMERGE.. 77, 261
NTH..262
Number Representations Used by DAPL ..54
Nyquist Frequency...140
O...264
OCOUNTS..205
ODEF..263
ODEFINE... 19, 24, 30, 60, 263
OEMID ...205
One-shot events ...120
Operands ...39
Operator Precedence ..43
Operators...40
OPT ..264
Optimizing channel pipe lists..82
Optimizing performance...81
Optimizing Processor Performance...81
Optimizing software triggering...84
OPTION..264
OPTIONS... 18, 24, 39, 44, 79, 93, 106, 205, 264

BUFFERING...104
QUANTUM ..105

Oscilloscope Emulation Application...119
Other Notes on Expressions..45

402 Index

OUTPORT .. 205, 269
OUTPORTS ..269
Output channel pipe ...392
Output com pipe ..391
Output Configuration Commands ..19, 30, 392
Output procedure ...392
Output underflow...97
Output Updating Configurations...60
OUTPUTS...205
OUTPUTWAIT .. 65, 66, 101, 271
Overflow ...64
Overflow and Underflow..97
Overflow Messages..98
OVERFLOWQ ...98, 205, 266
P ...287
PA...272
PAUSE.. 18, 272
PCASSERT ..126, 127, 273
PCOUNT...275
PDEF ..276
PDEFINE ... 24, 31, 61, 89, 276
Phase Response ...131
PID... 90, 91, 92, 277
PIDLATCH ...281
PIDRAMP...283
PIDSCRAM ..285
Pin Group..391
Pin Notations ...388
Pipe... 39, 392
PIPE..287
Pipe system buffering...71
Pipelining ..70
Pipelining and Burst Mode...70
PIPES.. 205, 287
POLAR ...289
Precedence ..43
Precision..49
Predefined com pipe...392
Preventing Overflow..99
Preventing Underflow ..101
Previous Versions of DAPL ...385
Prioritized Multitasking.. 85, 291
Prioritized Processing Application..90
PRIORITY ..291
Priority Levels in DAPL...85
Priority Scheduling ..87
PROCEDURES ...206
Process Control..36
Process Monitoring..36
Process Monitoring Application ...119
Processing Commands Now Obsolete...386
Processing Commands Now Retired ...386
Processing Configuration Commands ...20
Processing procedure ... 31, 392
Processing speed..81

Index 403

Processor and Memory Allocation ..79
PROMPT...266
Prompt character..392
PULSECOUNT ...292
PVALUE...293
PWM...294
QDCOUNT ...296
QDECODE..298
QUANTUM ..105
QUANTUM ..266
RANDOM... 46, 300
RANGE...301
Range Notations ..23
RAVERAGE .. 114, 129, 130, 302
Reader and Writer Constraints..61
Reading Binary Data from the PC...78
Reading Text from the PC..78
Reduce Latency ...107
Reducing Processor Load ...81
Region Notations ...23
REPLICATE ...303
Representing Sampled Data..139
Representing Sampled Data with Cosines and Sines..141
RESCUE ...266
Rescuer Scheduling..93
RESET ..18, 63, 201, 266, 304
RESTORE...266
RINTERVAL ..267
RMS..306
RQUANTUM..267
RSUM...307
RUNNING ..86
Running Average ...129
SAMPLE...309
SAMPLE BURST..66
Sample Command..148
SAMPLEHOLD ..311
Sampling and Updating..57
Saturation ..394
SAVE..267
SAWTOOTH...312
Scaling in the FFT..137
Scheduling...392
Scheduling Quantum..393
Scheduling Rules ...87
Scope of This Manual ..13
SD...314
SDISP ...314
SDISPLAY..314
Section 1. Overview...11
Section 2. Reference ..145
Sending Binary Data to the PC ...77
Sending Text to the PC...76
SEPARATE... 78, 315
SEPARATEF... 78, 316

404 Index

SERIAL ..206
SET..19, 58, 317
SET (multiple channel simultaneous sampling)...320
SET (output updating)..323
Shift operations..41
Sign Extension...55
Signal Conversion..36
Signal Filtering..36
Sines ...141
SINEWAVE ..325
Single-ended input ...393
SKIP ... 20, 90, 91, 92, 99, 106, 327
SLAVE ... 124, 328
SLEEPING task...86
Software Triggering..67, 84, 109
Speed, Optimizing performance..81
SQRT..329
SQUAREWAVE ...330
STA ..332
Standard Com Pipes...76
START..18, 21, 63, 64, 89, 332
Start group...393
Starting and Stopping...63
Starting and Stopping Triggers ...116
STARTS..206
STAT ..334
Statistics ..34
STATISTICS..99, 106, 334
STATUS ...336
STDDEV...337
STO ..338
STOP ... 18, 63, 201, 338
STR...339
Streaming Data ..83
String ..393
STRING ..339
STRINGS ..206
Supporting Older Software...388
SYMBOLS..206
Synchronize...393
Syntax ... 21, 39
SYSINECHO...267
SYSLOG...206
System Commands .. 18, 26
System Commands Now Obsolete..386
System Element Definition Commands...27
TAND ... 121, 340
Target (of DAPL expression)..39
Task ..393
Task Definition Command Summary..32
Task Definition Commands.. 31, 393
Task Functions...34
Task latency ..106
Task parameter notations..23
Task Parameter Notations...23

Index 405

Task switching... 79, 105
Task Timing Control..105
Tasking effects...72
TCOLLATE .. 122, 341
TERMINAL ..267
Text transfer rate..81
TFUNCTION1 ..343
TFUNCTION2 ..345
TGEN..347
The General Complex FFT...141
THERMO..348
TIME ... 19, 59, 60, 68, 351
Timestamp...393
Timestamp Modifying Commands..121
TMEMORY ..206
TOGGLE... 122, 354
TOGGWT ..122, 123, 356
TOR.. 121, 360
TRIANGLE...361
TRIG...364
TRIGARM ...118, 120, 363
Trigger .. 84, 394
TRIGGER ... 67, 364
Trigger Performance ..83
Triggering mode

AUTO...117
CYCLE ...118
DEFERRED..117
GATE ...118
HOLDOFF ..118
MANUAL...117
NATIVE ...118
NORMAL ...117
STARTUP...118

Triggering Modes ..117
Triggering with Multiple DAPs ..124
TRIGGERS ..110, 206, 364
Triggers and On Off Events..122
TRIGRECV... 124, 367
TRIGSCALE .. 115, 122, 127, 368
TRIGSEND ... 124, 371
Truncation ...394
TSTAMP...373
TTL...49
Underflow ...64
Underflow Messages..100
UNDERFLOWQ ... 206, 267
Unipolar ..49
Unused channel pipes...99
UPDATE...374
UPDATE BURST..66
Using Custom Commands to Reduce Latency...107
Using Priorities Effectively ..94
Using Software Triggering ...67
V...376

406 Index

VAR..376
Variable...394
VARIABLE...376
VARIABLES..39, 206, 376
Variables in Parameter Lists...388
VARIANCE ..378
VEC..379
VECT..379
VECTOR..22, 137, 379
Vectors..137
VECTORS ..206
Voltage ranges...49
Voltages and Integers...49
VRANGE ..381
WAIT... 67, 83, 84, 112, 114, 120, 126, 127, 382
Waveform Generation..35
Window Vectors .. 130, 137
Windowing..137
WMSG..207
WNUM ...207
Word ...54

	DAPL 3000 Manual
	Contents

	Introduction
	Scope of This Manual

	Introduction to DAPL
	Architectural Basics
	Data Processing Configuration
	System Commands
	Element Definition Commands
	Input Configuration Commands
	Output Configuration Commands
	Processing Configuration Commands

	General Rules for Command Syntax
	Case
	Names
	Uniqueness
	Abbreviations
	Blanks
	Comments
	Continuation
	Line Termination
	Numbers
	Channel Pipe Notations
	Task Parameter Notations
	Range Notations

	About Efficiency
	Direct Interaction with the Interpreter
	About Custom Processing Commands

	System Commands
	System Element Definition Commands
	Input and Output Configuration Commands
	Input Configuration Commands
	Output Configuration Commands

	Task Definition Commands
	Task Definition Command Summary
	Functional Categories of Tasks
	Data Selection
	Data Reduction and Statistics
	Data Management
	Waveform Generation
	Event Processing
	Digital Signal Processing
	Signal Conversion and Filtering
	Monitoring and Process Control

	Task Definition Using DAPL Expressions
	Expression Syntax
	Target
	Expression

	Expression Operands
	Expression Data Types
	Expression Operators
	Operator Precedence
	Buffering During Expression Evaluation
	Data Extraction
	Other Notes on Expressions
	DAPL Expression Application Examples

	Voltages and Number Representations
	Analog Input Voltages
	Digital Input Voltages
	Conversion Values
	Binary Representation of Numbers
	Hexadecimal Representation of Numbers
	Interpreting Conversion Values as Binary Fractions
	Number Representations Used by DAPL
	Conversions Between Data Types
	Converting to Engineering Units

	Sampling and Updating
	Configuration Commands
	Input Sampling Configurations
	Output Updating Configurations
	Reader and Writer Constraints
	Starting and Stopping
	Starting under hardware control
	Stopping under clock control
	Involuntary stopping: Underflow and Overflow
	Premature underflow and OUTPUTWAIT
	Burst mode

	Using Software Triggering
	Internal and External Clocking
	Channel List Clocking
	External clock
	A combination

	Pipelining and Burst Mode
	Fast sampling

	Buffering and Latency
	Hardware buffering
	Pipe system buffering
	Tasking effects

	Data Transfer
	Standard Com Pipes
	Sending Text to the PC
	Sending Binary Data to the PC
	Reading Text from the PC
	Reading Binary Data from the PC
	Additional Com Pipes

	Resource Allocation
	Processing Time Allocation
	Output Channel Access
	Memory Allocation

	Optimizing Processor Performance
	Reducing Processor Load
	Digital Signal Processing
	Communication Formats
	Channel Pipe Efficiency
	Streaming Data to the PC
	Trigger Performance
	High-Speed Triggering
	Benchmarking an Application

	Prioritized Multitasking
	Priority Levels in DAPL
	DAPL Tasking States
	Priority Scheduling
	The Round Robin Strategy
	Scheduling Rules
	Priority Inversions and Their Resolution

	Configuring Priorities
	Prioritized Processing Application
	First Solution
	Second Solution
	Comparing the Two Configurations

	Rescuer Scheduling
	Using Priorities Effectively

	Overflow and Underflow
	Overflow Messages
	Preventing Overflow
	Underflow Messages
	Preventing Underflow

	Low Latency Operation
	Buffering Control
	Task Timing Control
	Evaluating Task Latency
	Low Latency Option
	Using Custom Modules to Reduce Latency

	DAPL Software Triggering
	Defining Software Triggers
	Applying Software Triggers
	How Software Triggering Works
	Equalizing Data Rates
	Starting and Stopping Triggers
	Triggering Modes
	Applying Trigger Operating Modes
	Oscilloscope Emulation Application
	Process Monitoring Application
	Event Counting Application
	Destructive Tests and One-Shot Events

	Timestamp-Modifying Commands
	Triggers and Independent ON/OFF Events
	Triggering with Multiple Data Acquisition Processors
	Asynchronous Events and PCASSERT

	Digital Filtering
	Average and Running Average
	Finite Impulse Response Filters
	Generating Filter Coefficients
	Window Vectors
	Phase Response and Time Delay

	Fourier Transforms
	DFT Command
	FFT Command
	Choosing Data Types
	FFT Modes
	Windowing
	Scaling In FFT Modes
	Representing Sampled Data
	Nyquist Frequency
	Aliasing
	The General Complex FFT
	Representing Sampled Data with Cosines and Sines
	Interpreting the FFT for Real Data
	Errors in the FFT

	DAPL Commands
	
	EXAMPLE
	ABS
	ALARM
	AVERAGE
	BAVERAGE
	BMERGE
	BMERGEF
	BOUND
	BUFFERS
	CALIBRATE
	CANGLE
	CHANNELS (input sampling)
	CHANNELS (output updating)
	CHIRP
	CLCLOCKING
	CLOCK (input sampling)
	CLOCK (output updating)
	CMAG
	COMPRESS
	CONSTANTS
	COPY
	COPYVEC
	CORRELATE
	COSINEWAVE
	COUNT (for input sampling)
	COUNT (for output updating)
	CROSSPOWER
	CTCOUNT
	CTRATE
	CYCLE
	DACOUT
	DECIBEL
	DELTA
	DEXPAND
	DFT
	DIGITALOUT
	DISPLAY
	DLIMIT
	EDIT
	EMPTY
	END
	ERASE
	FFT
	FFT Modes without Data Post-Processing
	FILL
	FINDMAX
	FIRFILTER
	FIRLOWPASS
	FORMAT
	FREQUENCY
	GROUPS
	GROUPSIZE
	HELLO
	HIGH
	HTRIGGER (for input sampling)
	HTRIGGER (for output updating)
	IDEFINE
	INTERP
	LET
	LIMIT
	LOADING
	LOGIC
	LOW
	MASTER
	MERGE
	MERGEF
	NMERGE
	NTH
	ODEFINE
	OPTIONS
	OUTPORT
	OUTPUTWAIT
	PAUSE
	PCASSERT
	PCOUNT
	PDEFINE
	PID
	PIDLATCH
	PIDRAMP
	PIDSCRAM
	PIPES
	POLAR
	PRIORITY
	PULSECOUNT
	PVALUE
	PWM
	QDCOUNT
	QDECODE
	RANDOM
	RANGE
	RAVERAGE
	REPLICATE
	RESET
	RMS
	RSUM
	SAMPLE
	SAMPLEHOLD
	SAWTOOTH
	SDISPLAY
	SEPARATE
	SEPARATEF
	SET (individual channel sampling)
	SET (multiple channel simultaneous sampling)
	SET (single channel output updating)
	SINEWAVE
	SKIP
	SLAVE
	SQRT
	SQUAREWAVE
	START
	STATISTICS
	STATUS
	STDDEV
	STOP
	STRING
	TAND
	TCOLLATE
	TFUNCTION1
	TFUNCTION2
	TGEN
	THERMO
	TIME
	TOGGLE
	TOGGWT
	TOR
	TRIANGLE
	TRIGARM
	TRIGGERS
	TRIGRECV
	TRIGSCALE
	TRIGSEND
	TSTAMP
	UPDATE
	VARIABLES
	VARIANCE
	VECTOR
	VRANGE
	WAIT

	Previous Versions of DAPL
	System Commands Now Obsolete
	Processing Commands Now Obsolete
	Processing Commands Now Retired
	Channel List Lengths
	Hardware Pin Notations
	Name Conflicts
	Latency Control Options
	Variables in Parameter Lists
	Supporting Older Software

	Glossary
	Index

